

Project Partners: Easy Global Market, GMV, Intecs, The Open Group, University of Stuttgart,
 University of York, Unparallel Innovation, WINGS ICT Solutions

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

PHANTOM Project Partners accept no liability for any error or omission in the same.

© 2017 Copyright in this document remains vested in the PHANTOM Project Partners.

Project Number 688146

D4.2 – Preliminary release of integrated monitoring
platform, infrastructure integration and resource

management software stack

Version 2.0

5 November 2017

Final

Public Distribution

University of Stuttgart, University of York, Unparallel
Innovation, The Open Group

Page ii Version 2.0 5 November 2017

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Easy Global Market

Philippe Cousin

2000 Route des Lucioles

Les Algorithmes Batiment A

06901 Sophia Antipolis

France

Tel: +33 6804 79513

E-mail: philippe.cousin@eglobalmark.com

GMV
José Neves

Av. D. João II, Nº 43

Torre Fernão de Magalhães, 7º

1998 - 025 Lisbon

Portugal

Tel. +351 21 382 93 66

E-mail: jose.neves@gmv.com

Intecs

Silvia Mazzini

Via Umberto Forti 5

Loc. Montacchiello

56121 Pisa

Italy

Phone: +39 050 9657 513

E-mail: silvia.mazzini@intecs.it

The Open Group

Scott Hansen

Rond Point Schuman 6

5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of Stuttgart

Bastian Koller

Nobelstrasse 19

70569 Stuttgart

Germany

Tel: +49 711 68565891

E-mail: koller@hlrs.de

University of York

Neil Audsley

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325571

E-mail: neil.audsley@cs.york.ac.uk

Unparallel Innovation

Bruno Almeida

Rua das Lendas Algarvias, Lote 123

8500-794 Portimão

Portugal

Tel: +351 282 485052

E-mail: bruno.almeida@unparallel.pt

WINGS ICT Solutions

Panagiotis Vlacheas

336 Syggrou Avenue

17673 Athens

Greece

Tel: +30 211 012 5223

E-mail: panvlah@wings-ict-solutions.eu

5 November 2017 Version 2.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Internal draft 03/04/2017

0.2 Finalized structure of the release documentation 09/05/2017

0.3 Input from all partners 20/05/2017

0.4 Internal QA version 30/05/2017

1.0 Final version 31/05/2017

2.0 Revised version incorporating EC reviewers’ comments (Section 8) 05/11/2017

Page iv Version 2.0 5 November 2017

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Rationale ... 1

1.2 Release Information and Scope ... 2

1.3 Structure of This Document ... 4

2. PHANTOM Heterogeneous parallel infrastructure testbed ... 5

2.1 Standard CPU-Based Devices ... 5
2.1.1 Server-Solutions .. 5
2.1.2 Low-Power and Mobile Devices ... 7

2.2 Acceleration Devices ... 7
2.2.1 GPU-Based Accelerators .. 7
2.2.2 Specialised Acceleration Devices ... 8

2.3 Reconfigurable Devices ... 9
2.3.1 FPGAs ... 9
2.3.2 Tightly-Coupled Heterogeneous Boards ... 10

3. Released Component: Monitoring Client.. 12

3.1 Functionality ... 12
3.1.1 Overview ... 12
3.1.2 PHANTOM Advances .. 14

3.2 Dependencies and Installation .. 14

3.3 Usage Examples .. 17

3.4 Upcoming Actions ... 20

4. Released Component: Monitoring Server ... 21

4.1 Functionality ... 21
4.1.1 Overview ... 21
4.1.2 PHANTOM Advances .. 21

4.2 Dependencies and Installation .. 21

4.3 Usage Examples .. 22

4.4 Upcoming Actions ... 24

5. Released Component: Resource Management Service .. 25

5.1 Functionality ... 25
5.1.1 Overview ... 25
5.1.2 PHANTOM Advances .. 26

5.2 Dependencies and Installation .. 27

5.3 Upcoming Actions ... 27

6. Released Component: PHANTOM FPGA Linux Distribution and FPGA Infrastructure 28

6.1 Functionality ... 28
6.1.1 Overview ... 28
6.1.2 PHANTOM Advances .. 28

6.2 Installation... 29

6.3 Upcoming Actions ... 29

7. Released Component: PHANTOM IP Cores Marketplace ... 30

7.1 Functionality ... 30
7.1.1 Overview ... 30
7.1.2 PHANTOM Advances .. 30

7.2 Dependencies and Installation .. 30

5 November 2017 Version 2.0 Page v

Confidentiality: Public Distribution

7.3 Usage Examples .. 30

7.4 Upcoming Actions ... 34

8. Innovations beyond the state-of-the-art .. 35

8.1 The Monitoring Client ... 35
8.1.1 Short summary of major innovations .. 35
8.1.2 Background technologies utilized in development ... 36
8.1.3 Summary of new technologies/extensions developed ... 38
8.1.4 Early/Full Prototypes functionality ... 39

8.2 The Monitoring Server .. 40
8.2.1 Short summary of major innovations .. 40
8.2.2 Background technologies utilized in development ... 41
8.2.3 Summary of new technologies/extensions developed ... 42
8.2.4 Early/Full Prototypes functionality ... 43

8.3 The Resource Management Service (Supervisor) .. 44
8.3.1 Short summary of major innovations .. 44
8.3.2 Background technologies utilized in development ... 45
8.3.3 Summary of new technologies/extensions developed ... 45
8.3.4 Early/Full Prototypes functionality ... 46

8.4 The PHANTOM FPGA Linux Environment .. 47
8.4.1 Short summary of major innovations .. 47
8.4.2 Background technologies utilized in development ... 47
The hardware generation makes use of FPGA vendor tools to compile the design. ... 47
8.4.3 Summary of new technologies/extensions developed ... 47
8.4.4 Early/Full Prototypes functionality ... 48

8.5 The PHANTOM IP Core Marketplace .. 49
8.5.1 Short summary of major innovations .. 49
8.5.2 Background technologies utilized in development ... 49
8.5.3 Summary of new technologies/extensions developed ... 50
8.5.4 Early/Full Prototypes functionality ... 50

9. Conclusions .. 51

Appendix 1. Monitored Metrics .. 52

Appendix 2. Monitoring Client’s Plug-ins .. 55

Appendix 3. Movidius Board Integration in Monitoring Framework ... 59

Appendix 4. Security Auditing Specification .. 64

Page vi Version 2.0 5 November 2017

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

The purpose of this document is to describe the preliminary release (0.1) of the system

software stack of the PHANTOM platform. The components that are included in the

release are the Monitoring Framework for heterogeneous hardware platforms and

applications, the Resource Management service as well as a set of tools that enable the

integration of reconfigurable hardware resources into a common infrastructure – the

FPGA Linux system and the IP Cores Marketplace. The released tools constitute an

important central part of the PHANTOM platform framework and are used to support

the core platform components such as the Multi-Objective Mapper, the Deployment

Manager, and other (see D2.1). Some of the components are outcomes of several

successful EU projects, such as JUNIPER, EXCESS, DreamCloud, and other. In the

frame of PHANTOM, a number of adaptation, extension, and improvement actions

have been undertaken in order to fulfill the challenging requirements of the PHANTOM

platform on monitoring, real-times, etc.

Most notably, the release includes:

o The PHANTOM Monitoring Client – a tiny client software running on

the device and collecting performance- and energy-specific metrics. The

Client was designed in the EXCESS and DreamCloud project and had a

substantial improvement in PHANTOM (aiming to support a

separation of infrastructure- and application-specific metrics,

simultaneous monitoring of heterogeneous hardware platforms,

possibility to specify user-specific metrics, etc.)

o The PHANTOM Monitoring Server – a storage and database in which

the metrics from all clients are aggregated and centrally analyzed. Same

as the Client, the Server is an outcome of the DreamCloud project and

had a substantial improvement in PHANTOM (aiming to improve the

configurability, extend the analytics functionality with regard to the

gathered metrics values, etc.)

o Resource management service – a service that defines schemata

(leveraging the JSON format) that describes the status of each hardware

device included in the PHANTOM architecture as well as provides

general scripts to manage the resource status. The schema is hosted on

the web-server and database of the Monitoring Server. This is a pure

PHANTOM development.

o The PHANTOM Linux system which manages the software

components mapped to the processors of a reconfigurable device. This is

responsible for passing data to and from components and for

coordinating their execution. The Linux system is partially based on the

outcomes of the JUNIPER project but goes far beyond their core

functionality, among others – the PHANTOM FPGA architecture is

now included, which is responsible for hosting the hardware parts of

components mapped to the FPGA.

o The PHANTOM IP Cores Marketplace which contains several logic

blocks specially designed to be used as application-specific accelerators.

5 November 2017 Version 2.0 Page vii

Confidentiality: Public Distribution

This IP cores will have specific functions, commonly used mathematical

algorithms (e.g. Fast Fourier transform – FFT, Finite impulse response –

FIR, etc.), and image processing filters (e.g. Sobel Filter, Discrete

wavelet transform – DWT), etc.).implemented in FPGA logic fabric. The

PHANTOM IP cores are the pure PHANTOM development.

The release documentation in Section 2–7 gives necessary details on the technological

background and PHANTOM advances for all major tools and provides necessary

installation and usage guides for them. Section 8 provides details on the

implementation work that has been performed and planned for each of the

released tools.

5 November 2017 Version 2.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 RATIONALE

The modern software applications have to struggle with a great variety of the available

hardware platforms, ranging from the commodity Intel’s and low-power ARM’s CPUs

to the accelerators like NVIDIA’s GPUs, reconfigurable-logic systems like Xilinx’s

FPGAs or dedicated systems like Movidius’ Myriad2. The selection of the most proper

platform for the specific application, which has to fulfil the user-imposed functional and

non-functional requirements, is a very challenging task, even without considering the

required development efforts. Moreover, the challenge is getting even more complex

when assuming all those hardware working in a collaborative way within the common

infrastructure (which might range from the “system-on-chip” to the cluster-like

distributed systems). The term “Cloud” has become common even for such restrictive in

terms of hardware domains like embedded systems.

The component-based PHANTOM programming model (see D1.2 and D2.1) allows the

PHANTOM application to be deployed and executed on several hardware devices,

which might be of different types and nature. The PHANTOM project carries out the

mission to provide a platform that allows the components constituting the application

(within the specified control- and data-flow) to be executed in heterogeneous, parallel,

and distributed hardware environments (see Figure 1) without any hardware-specific

adaptation of the source code, needed to be done by the developers.

Operation of such a heterogeneous infrastructure imposes several challenges, in

particular:

 Monitoring of the infrastructure components status (e.g. utilization of the CPU

and memory, cache misses, etc.)

 Management of the infrastructure components (availability for allocation of new

application components, operational power mode, etc.)

 Availability of a run-time environment for the application execution (with the

major challenge lying on reconfiguration-enabled hardware)

In order to succeed in the intention to solve these challenges, the PHANTOM platform

requires middleware for monitoring, management, and integration into a common

infrastructure of the heterogeneous hardware resources, tracking and managing their

status, integration of the heterogeneous components into a common infrastructure. The

corresponding middleware has been developed in the frame of PHANTOM by the work

package WP4, see next section (Section 1.2).

Page 2 Version 2.0 5 November 2017

Confidentiality: Public Distribution

Figure 1: PHANTOM application execution in heterogeneous hardware environment

1.2 RELEASE INFORMATION AND SCOPE

The current (preliminary) release is comprised of the following components:

 Monitoring and resource management framework

The framework offers a set of tools and services for collection and centralized

analysis of a broad scope of metrics that characterize the state of the hardware

resources (utilization, overall energy consumption, etc.) as well as of the

applications (performance, application-specific energy consumption, etc.) over

the time. The framework is used by the PHANTOM Multi-Objective Scheduler

(MOM, for details please refer to deliverable D2.1) for elaborating the optimal

resource allocation strategies for the applications as well as by the end-users of

the applications in order to evaluate the performance characteristics and

optimize the infrastructure utilization. The framework also hosts a resource

management service that fosters the collection, publishing, and setting the status

of the controlled infrastructure devices.

The following components are released as parts of the monitoring and resource

management framework:

o Monitoring client – a tiny client software running on the device and

collecting performance- and energy-specific metrics

o Monitoring server – a storage and database in which the metrics from

all clients are aggregated and centrally analysed

5 November 2017 Version 2.0 Page 3

Confidentiality: Public Distribution

o Resource management service – a service, which is currently hosted by

the monitoring server, that aims to track and control the status of all

hardware devices included in the infrastructure

 Reconfigurable applications run-time environment

This environment provides technologies for executing applications on the

hardware constituted by reconfigurable (FPGA) logic devices. The environment

includes following components:

o The PHANTOM Linux system which manages the software

components mapped to the processors of a reconfigurable device. This is

responsible for passing data to and from components and for

coordinating their execution. It also implements the process isolation and

monitoring requirements of the platform.

The system also includes the PHANTOM FPGA architecture which is

responsible for hosting the hardware parts of components mapped to the

FPGA. This architecture also implements further isolation and

monitoring features. The architecture is automatically assembled and

built based on the input from the PHANTOM Multi-Objective Mapper.

o The PHANTOM IP Cores Marketplace which contains several logic

blocks specially designed to be used as application-specific accelerators.

This IP cores will have specific functions, commonly used mathematical

algorithms (e.g. Fast Fourier transform – FFT, Finite impulse response –

FIR, etc.), and image processing filters (e.g. Sobel Filter, Discrete

wavelet transform – DWT), etc.).implemented in FPGA logic fabric.

The release includes tarballs with the source code and installation scripts as well as

all necessary documentation and user guides. All released components are provided

under open source licenses (see Table 1) and are available for free downloading on

the PHANTOM’s public hosting platform GitHub (https://github.com/phantom-

platform).

Table 1: Released PHANTOM components

Component Version License Size Link

Monitoring

and

Resource

Management

Framework

0.1 Apache

2.0

173

KB

https://github.com/PHANTOM-

Platform/Monitoring/archive/0.1.zip

PHANTOM

Linux

System

0.1 GPLv3 5,2

MB

https://github.com/PHANTOM-

Platform/PHANTOM-FPGA-

Linux/archive/0.1.zip

https://github.com/phantom-platform
https://github.com/phantom-platform
https://github.com/PHANTOM-Platform/Monitoring/archive/0.1.zip
https://github.com/PHANTOM-Platform/Monitoring/archive/0.1.zip
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/archive/0.1.zip
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/archive/0.1.zip
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux/archive/0.1.zip

Page 4 Version 2.0 5 November 2017

Confidentiality: Public Distribution

PHANTOM

IP core

marketplace

0.1 Apache

2.0

10

MB

https://github.com/PHANTOM-

Platform/PHANTOM-IP-Core-

Marketplace/archive/0.1.zip

1.3 STRUCTURE OF THIS DOCUMENT

The remainder of the deliverable is organized as follows. Section 2 gives an overview of

the heterogeneous hardware resources available to the project consortium for the pilot

prototyping of tools and applications. Sections 3-7 describe the released components.

Section highlights the innovation aspects of the released tools and identifies upcoming

actions plan. Section 9 provides major findings and conclusions.

https://github.com/PHANTOM-Platform/Monitoring/archive/0.1.zip
https://github.com/PHANTOM-Platform/Monitoring/archive/0.1.zip
https://github.com/PHANTOM-Platform/Monitoring/archive/0.1.zip

5 November 2017 Version 2.0 Page 5

Confidentiality: Public Distribution

2. PHANTOM HETEROGENEOUS PARALLEL INFRASTRUCTURE TESTBED

In order to evaluate the functionality of the PHANTOM system software components as

well as to provide a heterogeneous parallel infrastructure testbed for the deployment of

the developed PHANTOM application components, the PHANTOM project partners

have granted access to some hardware resources that are available on their sites and also

that are required by the pilot applications (see D1.1). The resource access is only

granted for the PHANTOM project consortium under the policies of the respective

partners. Below an overview of the most typical resources is given.

2.1 STANDARD CPU-BASED DEVICES

The devices of this category constitute the most common on the market general-purpose

x86, amd64 and ARM hardware.

2.1.1 Server-Solutions

The partner USTUTT-HLRS provides access to its cluster testbed, which was set up in

the frame of the previous EU-projects EXCESS and DreamCloud. The cluster was used

as a testbed for evaluating energy-efficiency of High-Performance Computing

applications.

The cluster (see Figure 2) consists of 3 compute nodes and a common networking file

system, interconnected with the Infiniband network. Each node is built with NUMA

(Non-Uniform Memory Access) technology with the characteristics summarized in

Table 2.

Table 2: HPC cluster hardware specification

Amount Hardware components (node01 and node02)

2
Intel Xeon CPU: E5-2690 v2 (Ivy Bridge) - 10 cores; 25MB L3 Smart Cache; 4

Mem. Ch. DDR3 1866 MHz = 59.7 GB/s

8 HP Memory 4 GB DDR3 MFG 708633-B21 - 1866 MHz PC3-14900

1
GPU: Tesla K40c - GPU Clock: 745 MHz; Shading Units: 2880; GDDR5 12288

MB; 288 GB/s; PCIe3.0 8GT/s x16

1 Hard disk: 500GB WD5003AZEX Black

1 SSD: 128GB Vertex450

 Hardware components (node03)

2
Intel Xeon CPU: E5-2680 v3 (Haswell) - 12 cores; 30MB L3 Smart Cache; 4 Mem.

Ch. DDR4 2133 MHz = 68 GB/s

8 SAMSUNG DRAM 16GB Samsung DDR4-M393A2G40DB0-CPB- 2133 MHz

1 Hard disk: 500GB WD5003AZEX Black

1 SSD: 240GB Vertex460A

All 3 nodes are interconnected by the Infiniband network. A shared file system (NFS

over Infiniband) is available. There is a common front-end for accessing the cluster and

management of jobs on Nodes 01-03.

Page 6 Version 2.0 5 November 2017

Confidentiality: Public Distribution

A dedicated power measurement system is installed on each of the nodes in order to

collect power and energy infrastructure profiles.

The cluster will be used for the demanding in terms of performance applications without

hard real-time requirements, such as the simulation application of the USTUTT-HLRS

partner or the surveillance one of GMV.

Figure 2: EXCESS cluster of USTUTT-HLRS

5 November 2017 Version 2.0 Page 7

Confidentiality: Public Distribution

2.1.2 Low-Power and Mobile Devices

For evaluation purposes, the consortium partners will use a range of portable ARM-

based platforms such as ODROID-XU4 (Figure 3). ODROID is a one-board

SAMSUNG Exynos5 Octa CPU with 2 GB DDR3. The CPU consists of 4 more

powerful Cortex-A15 and 4 less powerful Cortex-A7 cores. A dynamic load balancing

system of the board decides on which core every thread should be executed. This board

is planned to be used for all 3 pilot PHANTOM use cases. The MOM (Multi-Objective

Scheduler) will be able to instruct the native scheduler of the board about the better

allocation properties and the impact of the static vs. the native dynamic scheduling will

be evaluated. There are a variety of other boards that will be evaluated, including

Raspberry PI-3 (1,2GHz, 4x Cortex-A53v8), Intel Galileo Gen 2, and some other.

 a) b)

Figure 3: Low-power hardware testbed: a) ODROID-XU4 board of USTUTT-HLRS, b) mini-
embedded cluster made of Raspberry Pi-3, Galileo, and Odroid

2.2 ACCELERATION DEVICES

2.2.1 GPU-Based Accelerators

The GPU-based accelerated compute resources are enjoying an increasing popularity in

many infrastructure communities from embedded systems to high-performance

computing. Piz Daint – the Europe’s fastest supercomputer
1
, located in Switzerland, is

made up of Tesla P100 GPUs from NVIDIA.

In the project, we are going to use the GPU facilities that are provided by the EXCESS

cluster, described in Section 2.1. Its Node01 includes an NVIDIA Tesla K40 graphic

card, and node03 – an NVIDIA Tesla K80 one. Tesla K40 can reach the performance of

up to 1.43 TFLOPS on 2.880 CUDA cores and provide 12 GB of the local memory

(GDDR5). Tesla K80 (Figure 4) consists of 2 Tesla K40 and offers the nearly double

performance (Figure 4).

1
 https://www.top500.org/lists/2016/11/

https://www.top500.org/lists/2016/11/

Page 8 Version 2.0 5 November 2017

Confidentiality: Public Distribution

source: NVIDIA

Figure 4: NVIDIA Tesla K80 GPU of USTUTT-HLRS

The NVIDIA GPUs will be used for the massively-parallel and data-centric (thousands

of independent threads working on shared data sets) parts of the computationally-

intensive parts of the USTUTT-HLRS and GMV workflows.

2.2.2 Specialised Acceleration Devices

Myriad 2
2
 (Figure 5a) is a specialised SoC (system-on-chip) hardware platform of a

company called Movidius (currently owned by Intel) that provides solutions for mobile

image processing, for which the CPU- and GPU-based solutions prove ineffective (due

to the mixed image rendering and processing workflows as well as the very high

requirements on portability and energy efficiency).

The Myriad 2’s SoC architecture (Figure 5b) provides on the same silicon alongside

with low-power general-purpose SPARC Leon cores (one for scheduling within the SoC

and the other for running the user code within a real-time operating system) a set of 20

hard-coded (ASICS) for HW-acceleration of some typical image processing operations

as well as 12 SHAVE 128-bit SIMD vector units. A common memory for all SoC

resources of 2 MB is provided by the board that functions as a hybrid L3 cache.

Additionally, up to 1 GB of external DRAM memory can be supported by the board.

2
 http://www.tomshardware.com/news/movidiud-myriad2-vpu-vision-processing-vr,30850.html

http://www.tomshardware.com/news/movidiud-myriad2-vpu-vision-processing-vr,30850.html

5 November 2017 Version 2.0 Page 9

Confidentiality: Public Distribution

 a) b)

Figure 5: Movidius’ Myriad 2 platform of USTUTT-HLRS: a) board view, b) architecture

This board is planned to be used by all use cases. The advantages of the heterogeneous

SoC components, including the acceleration parts, will be leveraged by the PHANTOM

platform components to optimise the application performance and power consumption

characteristics.

More details on the Myriad2 board, including the software stack information, are

provided in Appendix 2.

2.3 RECONFIGURABLE DEVICES

These devices include the reprogrammable-logic hardware that allows the hardware-

based application development.

2.3.1 FPGAs

An FPGA (Field Programmable Gate Array) is an array of logic gates that can be

hardware-programmed to fulfill user-specified tasks. In this way one can devise special

purpose functional units that may be very efficient for this limited task. Moreover, it is

possible to configure a multiple of these units on an FPGA that work in parallel. So,

potentially, FPGAs may be good candidates for the acceleration of certain applications.

Because of their versatility, it is difficult to specify where they will be most useful. In

general, though, they are not used for “heavy” 64-bit precision floating-point arithmetic.

Excellent results have been reported in searching, pattern matching, signal and image-

processing, encryption, etc. The clock cycle of FPGAs is low as compared to that of

present CPUs: 100-550 MHz which means that they are very power efficient. All

vendors provide runtime environments and drivers that work with Linux as well as

Windows.

Page 10 Version 2.0 5 November 2017

Confidentiality: Public Distribution

Traditionally, FPGAs are configured by means of a hardware description language

(HDL), like VHDL or Verilog. This is very cumbersome for the average programmer as

one not only has to explicitly define such details as the placement of the configured

devices but also the width of the operands to be operated on, etc. Also, the integration

normally uses a custom interface, which depends on the application and the algorithms

being implemented on the FPGA. This obligates the software designers to know the

hardware in detail, in order to code the drivers and applications to exploit the

accelerators. This problem has been recognized by FPGA-based vendors and a large

variety of programming tools and SDKs have come into existence. Unfortunately, they

differ enormously in approach and the resulting programs are far from compatible.

Figure 6: Xilinx Design Flow

The Xilinx workflow, shown in Figure 6, has a slow learning curve and can be difficult

to comprehend, since it encompasses many steps that are very complex by themselves

and uses several different tools for HDL generation (Vivado High-Level Synthesis),

design integration (Vivado, ISE), software development (Xilinx SDK) and Linux

integration (Xilinx SDX, Petalinux tools). The PHANTOM platform will ease the

process of integrating hardware accelerators based on FPGA IP cores with user

applications without the user having to understand about heterogeneous hardware

accelerators, HDL coding, FPGA synthesis and design integration with IP cores.

2.3.2 Tightly-Coupled Heterogeneous Boards

The FPGA boards targeted by the PHANTOM platform are all Zynq-class boards from

Xilinx (Figure 7). Zynq FPGAs are comprised of an ARM system-on-chip with attached

reconfigurable logic. The ARM SoCs are 32-bit or 64-bit multiprocessor systems,

clocked from 800Mhz upwards, and consisting of currently 2 or 4 cores. They contain

full MMUs and are capable of running a standard Linux mainline kernel. The FPGA

5 November 2017 Version 2.0 Page 11

Confidentiality: Public Distribution

logic is tightly coupled to the CPUs, allowing for very high-speed data transfer.

Therefore, the CPUs can be used for varied software tasks, and to invoke custom

hardware designs on the reconfigurable logic for high-volume, low-latency data

processing.

Figure 7: The Zynq reference block diagram (from www.xilinx.com)

In the context of the PHANTOM project, this means that FPGA targets are actually an

FPGA with tightly-coupled CPU SoC. PHANTOM does not target a “raw” FPGA but

requires a CPU-host instead. This allows FPGA targets to host both the software and

hardware parts of IP cores.

Page 12 Version 2.0 5 November 2017

Confidentiality: Public Distribution

3. RELEASED COMPONENT: MONITORING CLIENT

3.1 FUNCTIONALITY

3.1.1 Overview

Monitoring Client is a part of the PHANTOM monitoring framework (see Figure 8) that

is installed on each of the controlled devices of the infrastructure testbed in order to

collect the values of the monitored metrics. With this aim, the client is implemented as a

lightweight software stack that is running as a separate process running in the

background of the operating system (Linux). At every time interval, which can be

defined by the user (in the range from several milliseconds to minutes), the Client

collects the data from the controlled device and transmits them to the Monitoring Server

(see Section 4).

In order to minimize the impact on the performance of the monitored device, the client

relies heavily on the information obtained from the hardware counters such as PAPI,

RAPL, etc. The evaluation of the Monitoring Client overhead on the standard laptop

(dual-core AMD processor) showed the additional CPU usage of less than 0.1% and

the memory utilization of about 4,5 MB, which is acceptable even for the embedded

devices.

As a further optimization, the client offers a possibility to adjust the interval of data

collections (at the millisecond range), which can be done by the user manually or by the

other components of the PHANTOM platform.

The Client allows collection of 3 categories of metrics:

 Hardware performance metrics

 Hardware power consumption metrics

 Custom application-specific metrics

The first two categories are collected either for the whole device (infrastructure-level) or

for a particular application run (application-level). The application-level monitoring

constitutes a fraction of the monitoring data that are specifically consumed by the

application; it only happens if the user has registered the application run by the

Monitoring Framework (Figure 9), for which a special registration service is provided

by the Monitoring Framework (see details in the usage examples below). The detailed

list of the default metrics that can be collected by the Client is provided in D2.1 and in

Appendix 1. The Monitoring Client plug-ins that perform the metrics collection are

described in Appendix 2.

The custom metrics have been introduced in order to allow the application developer to

store any application-specific information, such as the number of simulation steps

performed, their duration, etc.

5 November 2017 Version 2.0 Page 13

Confidentiality: Public Distribution

The power consumption is obtained either from the dedicated hardware counters (as

provided by some server CPUs like Intel Haswell) or from an external power

measurement systems, such as ACME (Figure 10).

As the data transmission between the client and the server is performed through the

network, the client implements a buffering mechanism in order to minimize the amount

of the network transactions, thus not overloading the network traffic.

Figure 8: Architecture of PHANTOM Monitoring Framework

Figure 9: Infrastructure- and application-level monitoring with the Monitoring Client

Page 14 Version 2.0 5 November 2017

Confidentiality: Public Distribution

Figure 10: External power measurement board from ACME

3.1.2 PHANTOM Advances

The Monitoring Client was initially provided as a part of ATOM – a monitoring

framework solution developed in the frame of EXCESS and DreamCloud projects. In

PHANTOM, the Client was majorly refactored with the aim to support the distribution

of the monitored metrics to infrastructure- and application levels, facilitate inclusion of

new infrastructure devices such as FPGAs, improve the usability and configurability on

the user-side.

A short list of the major extensions is as follows:

 Support of buffering in order to decrease the network interception that is

introduced by transmitting the monitoring data from the Clients to the Server.

 Developed libraries and corresponding APIs to enable the application-specific

metrics definition and gathering.

 Enabled seamless support of external measurement systems along with the

counter-based hardware capabilities.

 Introduced dynamic configuration of metrics to be monitored, which implies the

user can define the metrics at the application run-time via an intuitive user

interface.

3.2 DEPENDENCIES AND INSTALLATION

As clarified above, plug-ins’ implementation depends on various libraries, hardware

availabilities or 3rd-party models, like PAPI, RAPL counters, Linux monitoring sensors

library, and etc. The Monitoring Client’s dependencies are summarized in Table 3.

5 November 2017 Version 2.0 Page 15

Confidentiality: Public Distribution

Table 3: Monitoring Client dependencies

Component Version Link

PAPI-C 5.4.0 http://icl.cs.utk.edu/papi/

CURL 7.37.0 http://curl.haxx.se/download/

Apache APR 1.5.1 https://apr.apache.org/

Apache APR Utils 1.5.3 https://apr.apache.org/

Nvidia GDK 352.55 https://developer.nvidia.com/gpu-deployment-

kit/

bison 2.3 http://ftp.gnu.org/gnu/bison/

flex 2.5.33 http://prdownloads.sourceforge.net/flex/

sensors 3.4.0 https://fossies.org/linux/misc/

m4 1.4.17 https://ftp.gnu.org/gnu/m4

libiio 1.0 https://github.com/analogdevicesinc/libiio.git

hwloc 1.11.2 https://www.open-

mpi.org/software/hwloc/v1.11/downloads/

EXCESS queue release/0.1.0 https://github.com/excess-project/data-

structures-library.git

To ease the process of environment setup, the release provides a bash script in the

source code repository, which downloads all dependencies and installs them locally in

the project directory. Thus, the client setup and compiling is performed in a sandbox

without affecting the current status of the operating system. After the prerequisites

installation, the PHANTOM monitoring client can be compiled, built, and installed by

using the provided Makefile.

Following commands (Listing 1) concludes the preparation and installation process,

which results in new directories named as /bin and /dist, with the later one holding the

built executable binaries and all required libraries. Please note that it is tested with GNU

(version 4.9.2) compiler on the HPC cluster.

http://icl.cs.utk.edu/papi/
http://curl.haxx.se/download/
https://apr.apache.org/
https://apr.apache.org/
https://developer.nvidia.com/gpu-deployment-kit/
https://developer.nvidia.com/gpu-deployment-kit/
http://ftp.gnu.org/gnu/bison/
http://prdownloads.sourceforge.net/flex/
https://fossies.org/linux/misc/
https://ftp.gnu.org/gnu/m4
https://github.com/analogdevicesinc/libiio.git
https://www.open-mpi.org/software/hwloc/v1.11/downloads/
https://www.open-mpi.org/software/hwloc/v1.11/downloads/
https://github.com/excess-project/data-structures-library.git
https://github.com/excess-project/data-structures-library.git

Page 16 Version 2.0 5 November 2017

Confidentiality: Public Distribution

Listing 1: Monitoring Client setup

$ git clone https://github.com/phantom-monitoring-framework/phantom_monitoring_client

$ cd phantom_monitoring_client

$./setup.sh

If the added device is new, i.e. has not been registered by the local instance of the

Monitoring Server yet, then the user should define a unique name for the device (e.g.

“my_new_device”) and provide it as “platform_id” option in the configuration file

.src/mf_config.ini. After that, the monitoring client installation can be completed as

follows (Listing 2):

Listing 2: Monitoring Client final installation steps

$ make clean-all

$ make all

$ make install

The newly installed Monitoring Client configuration can be specified in a special

configuration file named mf_config.ini, in which the location (URI) of the Monitoring

Server can be defined, the plug-ins can be activated/deactivated, plug-in parameters

specified, the monitoring update time intervals set, etc. (see example in Listing 3).

Listing 3: Example of Monitoring Client configuration

mf_config.ini

[generic]

server = http://localhost:3033/v1

...

[plugins]

mf_plugin_Board_power = on

mf_plugin_CPU_perf = off

…

[timings]

default = 1000000000ns

update_configuration = 360s

mf_plugin_Board_power = 1000000000ns

…

[mf_plugin_Board_power]

ACME_BOARD_NAME = baylibre-acme.local

device0:current = on

device0:power = on

device0:vshunt = off

http://localhost:3033/v1

5 November 2017 Version 2.0 Page 17

Confidentiality: Public Distribution

device0:vbus = off

…

3.3 USAGE EXAMPLES

Before starting the Monitoring Client instance on the newly configured device, it should

be ensured that the local instance of the Monitoring Server is properly installed and

running (see Section 4 for details).

Infrastructure-level monitoring

The infrastructure-level monitoring of the new device is enabled by the command

(Listing 4), in which the option “:platform_id” corresponds to the device id that was

selected at the previous step (installation):

Listing 4: Registration of a new platform by Monitoring Client

$ curl -H "Content-Type: application/json" -XPUT

localhost:3033/v1/phantom_mf/workflows/infrastructure -d

'{"application":"infrastructure","author":"Henry

Schmidt","optimization":"Time","tasks":[{"name":":platform_id","exec":"mf_client","cores_nr": "1"}]}'

The following setting is used to provide the Monitoring Client with some details on the

monitored device architecture, which are necessary for a proper monitoring (Listing 5):

Listing 5: Specification of new platform settings by Monitoring Client

$ curl -H "Content-Type: application/json" -XPUT localhost:3033/v1/phantom_rm/configs/:platform_id -

d

'{"parameters":{"MAX_CPU_POWER":"24.5","MIN_CPU_POWER":"6.0","MEMORY_POWER":"2.016","L2

CACHE_MISS_LATENCY":"59.80","L2CACHE_LINE_SIZE":"128","E_DISK_R_PER_KB":"0.0556","E_DISK_W

_PER_KB":"0.0438","E_NET_SND_PER_KB":"0.14256387","E_NET_RCV_PER_KB":"0.24133936"}}'

The Client can now be started with a special shell script (Listing 6):

Listing 6: Starting Monitoring Client instance

$ cd scripts

$./start.sh

The following query is used to discover the individual ids of the launched Client

instance:

Listing 7: Obtaining the list of launched Monitoring Client instances

$ curl -XGET localhost:3033/v1/phantom_mf/experiments

Page 18 Version 2.0 5 November 2017

Confidentiality: Public Distribution

Those ids can be used to query the monitoring data, e.g. the CPU usage or the energy

consumption (Listing 8):

Listing 8: Requesting the CPU usage and energy consumption metrics values

$ curl -XGET 'localhost:3033/v1/phantom_mf/statistics/infrastructure/excess_node01/AVtmz-

r3arTJxoIfKFpP?metric=CPU_usage_rate&from=2017-04-13T12:17:00.000&to=2017-04-

13T12:18:00.000'

$ curl -XGET 'localhost:3033/v1/phantom_mf/statistics/infrastructure/excess_node01/AVtmz-

r3arTJxoIfKFpP?metric=device0:power&from=2017-04-13T12:17:00.000&to=2017-04-13T12:18:00.000'

Application-level monitoring

Following pseudo-code (Listing 9) gives a brief impact on how to use the client APIs

for the C language. If all preconditions could be satisfied by the target platform, users

are able to gather metrics about CPU, memory, disk I/O and power consumptions of

various devices for the running code block. In addition to these predefined metrics,

users are allowed to send also user-defined metrics. Taking the given source code as an

example (Listing 9), the user-defined metrics are execution duration of each loop, and

the number of loops after the simulation is finished. There are no limitations about the

data type of the user-defined metrics, however, to realize this property, users are

required to convert the metrics value to a string before calling the corresponding API.

Listing 9: Example of HPC simulation application with monitoring APIs integrated

#include ...

extern "C" {#include "../src/mf_api.h"}

...

int main()

{

/* initialization of various application elements, and parameters */

 ...

 initNetwork("TestNet", &netparams, 8, 6);

 initBranches(&(*branches), netparams);

 initVertexes(&(*vertexes), netparams);

 float integrationStep = 0.001; // simulation steps

 int nrLoops = 5000; // simulation loops

/* MONITORING START */

 metrics m_resources;

 m_resources.num_metrics = 3;

 m_resources.local_data_storage = 1;

 m_resources.sampling_interval[0] = 1000; // 1000 ms

 strcpy(m_resources.metrics_names[0], "resources_usage");

 m_resources.sampling_interval[1] = 1000; // 1000 ms

 strcpy(m_resources.metrics_names[1], "disk_io");

 m_resources.sampling_interval[2] = 1000; // 1000 ms

 strcpy(m_resources.metrics_names[2], "power");

5 November 2017 Version 2.0 Page 19

Confidentiality: Public Distribution

 char *datapath = mf_start("141.58.0.8:3033", "node01", &m_resources);

/* simulation process */

 for (int n = 0; n < nrLoops; n++) {

 auto begin_time = std::chrono::high_resolution_clock::now();

 simulation_loop(&(*branches), &(*vertexes), netparams, n,

 integrationStep);

 auto end_time = std::chrono::high_resolution_clock::now();

 std::chrono::duration<double, std::milli> duration = end_time-begin_time;

 /* MONITORING USER-DEFINED METRICS → duration of each loop */

 char metric_value[8] = {'\0'};

 sprintf(metric_value, "%f", duration);

 mf_user_metric("duration", metric_value);

 }

/* MONITORING END */

 mf_end();

/* MONITORING USER-DEFINED METRICS →total nr. of completed loops */

 char metric_value[8] = {'\0'};

 sprintf(metric_value, "%d", nrLoops);

 mf_user_metric("nrLoops", metric_value);

/* MONITORING SEND */

 char *experiment_id = mf_send("141.58.0.8:3033", "dummy", "t1", "node01");

 printf("\n> experiment_id is %s\n", experiment_id);

 cout << "Simulation finished";

 return 0;

}

After the execution of the HPC simulation application, a unique execution ID will be

displayed as an output in the terminal. Thus we could retrieve all sampled metrics and

associated simple statistics via the server provided RESTful APIs (cf. D2.1). Here only

the user-defined metrics statistics are shown as follows:

Listing 10: Requesting the application-specific metrics values

$ curl

141.58.0.8:3033/v1/phantom_mf/statistics/dummy/t1/Avskow_O7rO13ZBQKWc0?metric=duration

$ [{"workflow":{"href":"http://fe.excess-

project.eu:3033/v1/mf/workflows/dummy"},"metric":"duration","statistics":{"count":5000,"min":0,"ma

x":1,"avg":0.0052,"sum":26,"sum_of_squares":26,"variance":0.00517296,"std_deviation":0.0719232924

7191065,"std_deviation_bounds":{"upper":0.1490465849438213,"lower":-

0.1386465849438213}},"min":{"TaskID":"t1","type":"user_defined","host":"platform_default","local_ti

mestamp":"2017-03-31T15:51:45.883","duration":0.474054,"server_timestamp":"2017-03-

31T15:51:58.515"},"max":{"TaskID":"t1","type":"user_defined","host":"platform_default","local_timest

Page 20 Version 2.0 5 November 2017

Confidentiality: Public Distribution

amp":"2017-03-31T15:51:49.204","duration":1.151286,"server_timestamp":"2017-03-

31T15:52:13.521"}}]

$ curl

141.58.0.8:3033/v1/phantom_mf/statistics/dummy/t1/AVskow_O7rO13ZBQKWc0?metric=nrLoops

$ [{"workflow":{"href":"http://fe.excess-

project.eu:3033/v1/mf/workflows/dummy"},"metric":"nrLoops","statistics":{"count":1,"min":5000,"max

":5000,"avg":5000,"sum":5000,"sum_of_squares":25000000,"variance":0,"std_deviation":0,"std_deviati

on_bounds":{"upper":5000,"lower":5000}},"min":{"TaskID":"t1","type":"user_defined","host":"platform

_default","local_timestamp":"2017-03-31T15:51:57.892","nrLoops":5000,"server_timestamp":"2017-

03-

31T15:52:44.410"},"max":{"TaskID":"t1","type":"user_defined","host":"platform_default","local_timest

amp":"2017-03-31T15:51:57.892","nrLoops":5000,"server_timestamp":"2017-03-31T15:52:44.410"}}]

3.4 UPCOMING ACTIONS

The following major actions will be performed by the final release:

Infrastructure support. The target infrastructure for PHANTOM would be

reconfigurable and heterogeneous, including CPU, GPU, embedded system and FPGA-

based hardware. However, with respect to FPGA-based infrastructure, currently, no

specific plug-ins and metrics in terms of performance and power consumption are

supported. We will devote more time and effort for the specific platform and meet the

demands of use cases before the final release.

Efficiency and overhead evaluation. The monitoring sampling frequency is required

to be fine-grained, approaching approximately microseconds range in some extreme

circumstances. Thus we will need to analyze the client-server communication’s

efficiency and overhead in order to ensure a high scalability and a minimum overhead

to the system’s performance.

Improved documentation. We will provide monitoring handbooks for the major

hardware platforms that are supported by the Monitoring Framework. Such a handbook

will contain typical usage strategies of the monitoring components, getting-started

guides for the end-users as well as troubleshooting instructions.

5 November 2017 Version 2.0 Page 21

Confidentiality: Public Distribution

4. RELEASED COMPONENT: MONITORING SERVER

4.1 FUNCTIONALITY

4.1.1 Overview

The PHANTOM monitoring server is composed of two components: a web server and a

data storage system. The web server provides various functionalities for data query and

data analysis via RESTful APIs with documents in JSON format. The server's URL is

"localhost:3033" by default.

The monitoring server receives data from the all registered Monitoring Clients (see

Section 3) via RESTful interfaces. The server is implemented using Node.js web server

suite and connects to the Elasticsearch database to store and access metric data.

4.1.2 PHANTOM Advances

The PHANTOM Monitoring Server is based on the previously available ATOM

solution, which has been extended to support the requirements that are specific for the

PHANTOM platform. Some of the major extensions are as follows:

 Support of the metric data buffering in order to reduce the network traffic

overhead between the Clients and the Server

 Advanced analytical functions for the collected data analysis, as required by the

Multiobjective Mapper (MOM)

4.2 DEPENDENCIES AND INSTALLATION

The Monitoring Server’s dependencies are summarized in Table 4.

Table 4: Monitoring Server dependencies

Component Version Link

Elasticsearch 1.4.4 https://www.elastic.co/products/elasticsearch

Node.js 0.9 https://apr.apache.org/

npm 1.3.6 https://www.npmjs.com/

To install all the prerequisites, a setup script is provided. The following commands are

used for this (Listing 11).

Listing 11: Monitoring Server installation scripts

$ https://github.com/phantom-monitoring-framework/phantom_monitoring_server.git

$ cd phantom_monitoring_server

$./setup.sh

Page 22 Version 2.0 5 November 2017

Confidentiality: Public Distribution

The PHANTOM monitoring server is already deployed on one node of the HPC cluster,

being publicly accessible via the IP address 141.58.0.8 with port 3033. With the created

daemon script, which is kept in /etc/init.d, the server can be controlled easily as a Linux

service by the following commands (Listing 12)

Listing 12: Monitoring Server management scripts

$ sudo service phantom_server start

$ sudo service phantom_server stop

$ sudo service phantom_server restart

$ sudo service phantom_server status

To simplify the process of environment setup, the release provides a bash script in the

source code repository, which downloads all dependencies and installs them locally in

the project directory. After the prerequisites installation, the PHANTOM monitoring

server can be compiled, built, and installed by using the provided Makefile. Further

installation instructions are provided at https://github.com/phantom-monitoring-

framework/phantom_monitoring_server

4.3 USAGE EXAMPLES

The PHANTOM Monitoring Server can be reached by means of RESTful GET/PUT

requests in order to obtain the information/statistics about the controlled hardware

devices and applications. Listing 13 shows some basic queries that are often used by the

customers (the platform’s MOM or the end-users).

Listing 13: Basic queries to Monitoring Server

APPLICATIONS/WORKFLOWS

GET /v1/phantom_mf/workflows

GET /v1/phantom_mf/workflows/:application_id

PUT /v1/phantom_mf/workflows/:application_id -d '{...}'

EXPERIMENTS

GET /v1/phantom_mf/experiments

GET /v1/phantom_mf/experiments/:execution_id?workflow=:application_id

POST /v1/phantom_mf/experiments/:application_id -d '{...}'

METRICS

GET /v1/phantom_mf/metrics/:application_id/:task_id/:execution_id

POST /v1/phantom_mf/metrics -d '{...}'

https://github.com/phantom-monitoring-framework/phantom_monitoring_server
https://github.com/phantom-monitoring-framework/phantom_monitoring_server

5 November 2017 Version 2.0 Page 23

Confidentiality: Public Distribution

POST /v1/phantom_mf/metrics/:application_id/:task_id/:execution_id -d '{...}'

PROFILES

GET /v1/phantom_mf/profiles/:application_id

GET /v1/phantom_mf/profiles/:application_id/:task_id

GET /v1/phantom_mf/profiles/:application_id/:task_id/:execution_id

GET /v1/phantom_mf/profiles/:application_id/:task_id/:execution_id?from=...&to=...

RUNTIME

GET /v1/phantom_mf/runtime/:application_id/:execution_id

GET /v1/phantom_mf/runtime/:application_id/:task_id/:execution_id

STATISTICS

GET /v1/phantom_mf/statistics/:application_id?metric=...

GET /v1/phantom_mf/statistics/:application_id?metric=...&host=...

GET /v1/phantom_mf/statistics/:application_id?metric=...&from=...&to=...

GET /v1/phantom_mf/statistics/:application_id?metric=...&host=...&from=...&to=...

GET /v1/phantom_mf/statistics/:application_id/:execution_id?metric=...

GET /v1/phantom_mf/statistics/:application_id/:execution_id?metric=...&host=...

GET /v1/phantom_mf/statistics/:application_id/:execution_id?metric=...&from=...&to=...

GET /v1/phantom_mf/statistics/:application_id/:execution_id?metric=...&host=...&from=...&to=...

GET /v1/phantom_mf/statistics/:application_id/:task_id/:execution_id?metric=...

GET /v1/phantom_mf/statistics/:application_id/:task_id/:execution_id?metric=...&host=...

GET /v1/phantom_mf/statistics/:application_id/:task_id/:execution_id?metric=...&from=...&to=...

GET

/v1/phantom_mf/statistics/:application_id/:task_id/:execution_id?metric=...&host=...&from=...&to=...

Page 24 Version 2.0 5 November 2017

Confidentiality: Public Distribution

4.4 UPCOMING ACTIONS

The following major actions will be performed by the final release:

Interface extension. We will continue the implementation of RESTful interfaces for

users query and management requests. It is also possible to use the monitoring server

for storing and managing platform’s configuration and deployment data.

Resource manager integration. The configuration of the Monitoring Client, including

the plug-in information, should be done via the Resource Manager Service (currently

performed by the user manually by editing the configuration file).

Improved documentation. We will provide monitoring handbooks for the major

hardware platforms that are supported by the Monitoring Framework.

5 November 2017 Version 2.0 Page 25

Confidentiality: Public Distribution

5. RELEASED COMPONENT: RESOURCE MANAGEMENT SERVICE

5.1 FUNCTIONALITY

5.1.1 Overview

Resource manager aims to track and control the status of the infrastructure (hardware)

resources supervised by the PHANTOM platform with the goal of improving the

application performance and decreasing the hardware device power consumption

These goals should be achieved by applying the following techniques which have been

studied by several past projects, such as EXCESS and DreamCloud:

 Dynamic identification of the application bottlenecks with the aim of better

hardware utilization and thus decreased execution time (by leveraging the

Monitoring Framework services)

 Dynamic Power Management aiming to apply techniques like DVFS (Dynamic

Voltage and Frequency Scaling) to decrease the power consumption of the

hardware while ensuring the acceptable Quality Attributes like the execution

time or the met deadlines

 Implementation of security management options as provided by the Security

Manager

Unlike the OpenStack middleware, which was envisioned as a possible solution in the

preparation phase of the PHANTOM project, our chosen resource management

alternative is based on the in-house solutions of the project partners and provides a more

light-weight, modular, and flexible solution that leverages the monitoring infrastructure

facilities. A flexible JSON schema is used to keep track of all resource-related data.

In order to perform the identified actions, the PHANTOM Resource Manager (RM) is

constituted of 3 main services:

 Resource configuration service – the web-service deployed at the premises of

the Monitoring Server that keeps the hardware-specific (static) configuration of

the managed devices. This configuration usually contains the information which

is provided by the vendors of the hardware, such as the number of processing

elements (cores), their cache latency, the maximum and minimum power of

CPU and memory, and other device-specific information is stored. In particular,

this information is used to configure the plug-ins of the monitoring framework.

This information is filled whenever a new hardware device is added. In the

current release, this operation has to be done manually by the users

(infrastructure operators). The RM status tracking service is developed as a

RESTful service and deployed by default on the facilities of the Monitoring

Server. The communication with the tracking service is performed by means of a

RESTful interface (Table 5) that allows setting (by means of PUT command)

and obtaining (GET) the information

Page 26 Version 2.0 5 November 2017

Confidentiality: Public Distribution

 Status tracking service – the web-service (and, as such, deployed at the

premises of the Monitoring Server) that provides the most actual (dynamic)

status of the managed hardware devices and the execution of applications. The

resource allocation information includes the status of each elementary logical

unit (e.g. the CPU core) of the managed device, such as the operational power

mode, tact frequency, availability (e.g. whether the unit is occupied for the

execution of an application or not). The service also provides scripts that allow

the other components of the PHANTOM platform (e.g. the Deployment

Manager) to manage (set) the status of the hardware devices that were selected

by MOM for the deployment of application components.

 The dynamic power management service – a set of scripts that are used to

control the power mode in which the controlled device is operating. The scripts,

as well as the underlying management tools, are outcomes of the DreamCloud

project. For the CPU-based devices, for example, the scripts apply the DVFS

(Dynamic Voltage and Frequency Scaling) technique in order to reduce the

power consumption of the individual cores.

Table 5: RESTful APIs of PHANTOM Resource Manager service

configs – resource configuration service

/configs GET Get a list of all registered platforms with links to

their configuration details

/configs/:platform_id GET Get configuration details (e.g. monitoring-related

parameters) for a specific platform

PUT Add/Change the configuration (e.g. monitoring-

related parameters) for a specific platform

resources – status tracking service

/resources GET Get a list of all registered platforms with links to

their resources details

/resources/:platform_id GET Get information about the resources available for

a specific platform

PUT Create/Update the resources information for a

specific platform

5.1.2 PHANTOM Advances

The core of the Resource Management services is coming from the past DreamCloud

and EXCESS projects. In PHANTOM, the JSON-based hardware description schema,

which is the core of all services included in the Resource Manager, has been reworked

in order to address the heterogeneity of the resources testbed.

5 November 2017 Version 2.0 Page 27

Confidentiality: Public Distribution

5.2 DEPENDENCIES AND INSTALLATION

Due to the fact, that Resource Manager is implemented as a service, and the Monitoring

Server already includes a web-server that can host many different services, it was

decided to provide the Resource Manager as a part of the Monitoring Server release (see

Section 4 for details on this release).

5.3 UPCOMING ACTIONS

The following major actions will be performed by the final release:

 Identification services. We plan to provide an automatic procedure for

identification of new resources and automatic provisioning of the resource

schema.

 Improved documentation. We will provide resource management handbook

for the major hardware platforms that are supported by the Resource Manager.

Page 28 Version 2.0 5 November 2017

Confidentiality: Public Distribution

6. RELEASED COMPONENT: PHANTOM FPGA LINUX DISTRIBUTION AND

FPGA INFRASTRUCTURE

6.1 FUNCTIONALITY

6.1.1 Overview

The Linux distribution that is used for the PHANTOM FPGA targets is defined and

standardized to aid coordination between partners. This component allows for the parts

of the distribution to be easily rebuilt and extended, for example, to support new FPGA

boards.

The main purpose of the PHANTOM Linux is to be able to execute PHANTOM IP

cores that have been mapped to an FPGA platform (CPU plus FPGA) by the Multi-

Objective Mapper. The aim is to allow the PHANTOM platform to automatically map

application components to target FPGA devices, automatically construct and implement

FPGA designs which include those components, and to execute them seamlessly as part

of the running application.

The PHANTOM distribution also contains the scripts which create PHANTOM-

compatible FPGA designs. A PHANTOM hardware design encapsulates a set of IP

cores, makes them available to the application components running in the Linux

distribution, and includes the various security and monitoring requirements of the

PHANTOM platform.

The current version of the release contains facilities to construct the bootloaders, kernel,

root filesystem, hardware design, and the various drivers and interfaces. It also

implements initial monitoring requirements by providing access to power monitoring.

The additional security requirements provided by the PHANTOM platform will be

added in later releases.

6.1.2 PHANTOM Advances

A short list of the major features is as follows:

 The distribution includes support for PHANTOM monitoring actions, for

example, to read current power use.

 Support for communications between a Linux user space process and

PHANTOM IP cores. IP cores are mapped to the User-space I/O subsystem so

processes can map the address space of the IP core into that of the user space

process. This is encapsulated in a provided API, which is documented in the

release. This API is used by the PHANTOM IP core developers, which writing

the software part of their IP core, to implement the transfer of data in and out of

the reconfigurable logic.

 Support for automatic creation of FPGA hardware designs which encapsulate

the PHANTOM IP cores developed as part of the project. A hardware design

consists of a set of PHANTOM IP cores, wired up appropriately, and a further

set of supplementary cores for tasks such as clock management, monitoring and

5 November 2017 Version 2.0 Page 29

Confidentiality: Public Distribution

debugging, and bus arbitration. When the Multi-Objective Mapper assigns a set

of IP cores to a given FPGA platform, the generation tools assemble the design

from the specified PHANTOM IP cores and the necessary supplementary cores,

and wires everything appropriately.

6.2 INSTALLATION

Full installation and building instructions are in the source repository. The README

file explains how to build the kernel, device tree, and bootloaders for a given target

FPGA board. It also explains the process of automating the bitfile generation for your

target device. Begin by checking out the repository:

git clone https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux.git

Note that building the Linux distribution and any hardware designs require the Vivado

Design Suite from Xilinx. The Linux distribution is built using Multistrap

(https://wiki.debian.org/Multistrap) which must be installed.

6.3 UPCOMING ACTIONS

The following major actions will be performed by the final release:

Action 1. Integration of MPI for the implementation of the PHANTOM

communications API. This API is used by the Deployment Manager and allows

components to communicate with other components on other parts of the platform.

Action 2. Further support for monitoring metrics, as determined by the consortium.

Power use of both the CPUs and FPGA, and various kernel metrics (i.e. memory use,

cache use etc.) are currently supported. This action will implement custom hardware to

monitor bandwidth between the CPU and FPGA.

Action 3. Implementation of Security features. The FPGA platform should also be able

to provide as much of the PHANTOM security as possible. The investigation will

determine what is possible.

https://wiki.debian.org/Multistrap)

Page 30 Version 2.0 5 November 2017

Confidentiality: Public Distribution

7. RELEASED COMPONENT: PHANTOM IP CORES MARKETPLACE

7.1 FUNCTIONALITY

7.1.1 Overview

The IP Core Marketplace can be seen as a part of the PHANTOM Repository specific

for storing all the dedicated FPGA logic block. The IP Cores in the Marketplace will

serve as accelerators for specific functions, commonly used mathematical algorithms

(e.g. Fast Fourier transform (FFT), Finite impulse response (FIR), etc.), or image

processing filters (e.g. Sobel Filter, Discrete wavelet transform (DWT), etc.)

implemented in FPGA logic fabric.

7.1.2 PHANTOM Advances

A conjugation of the easy to use PHANTOM platform with the pre-designed IP cores

can accelerate applications without the need to redesign from scratch the FPGA specific

part.

A short list of the major extensions is as follows:

 Reusability of IP Cores that started from application-specific needs.

 Implementation of generic functions, that can be used outside PHANTOM

application cases.

7.2 DEPENDENCIES AND INSTALLATION

IP Core Marketplace is expected to be existent in the form of a Git repository.

$ git clone https://github.com/PHANTOM-Platform/PHANTOM-IP-Core-Marketplace

7.3 USAGE EXAMPLES

Discrete Wavelet Transform (DWT)

A discrete wavelet transform (DWT) is any wavelet transform for which the wavelets

are discretely sampled. As with other wavelet transforms, a key advantage it has over

Fourier transforms is a temporal resolution: it captures both frequency and location

information (location in time). Wavelets are often used to denoise two-dimensional

signals, such as images. The original image is low-pass filtered, high-pass filtered and

downscaled yielding four images, each describing local changes in brightness (details)

in the original image.

5 November 2017 Version 2.0 Page 31

Confidentiality: Public Distribution

Figure 11: a) Image before DWT b) Image after DWT

Design Flow

This filter is implemented in FPGA logic encapsulated in an IP Core that can be found

in the PHANTOM IP Core Marketplace. This DWT IP Core (Figure 12) receives an

image via an AXI Stream, does the processing transparently and outputs four images

also via AXI Stream interfaces. The IP Core can be controlled (Start, Stop, etc.) via the

axi_CONTROL_BUS.

Figure 12: IP core interfaces example

AXI is part of ARM AMBA, a family of microcontroller buses first introduced in 1996.

The first version of AXI was first included in AMBA 3.0, released in 2003. AMBA 4.0,

released in 2010, includes the second major version of AXI, AXI4.

 There are three types of AXI4 interfaces:

 AXI4: For high-performance memory-mapped requirements.

 AXI4-Lite: For simple, low-throughput memory-mapped communication (for

example, to and from control and status registers).

Page 32 Version 2.0 5 November 2017

Confidentiality: Public Distribution

 AXI4-Stream: For high-speed streaming data.

To be able to use this IP Core it needs to be integrated into a functional FPGA design

that exploits these types of interfaces. The design in Figure 13 shows the normal usage

of this DWT IP Core integrated with four DMAs to handle all the data streaming,

interconnects to manage the connections between different blocks and the Zynq

Processing System, to control the data transfer between the DMAs and the IP Core and

also to control the IP Core functionality.

Figure 13: IP core design example

All the logic blocks are controlled using default AXI interfaces like the ones described

above.

 S_AXI_LITE -> DMA Control

 S_AXI -> Memory Interface Control

 S_AXI_CONTROL_BUS -> IP Core Control

AXI Stream interfaces are used between the IP Core and DMAs to handle all the high

speed data transfer that goes in and out of the IP Core.

 M_AXIS_S2MM -> Master Stream-to-Memory-Map (S2MM)

 M_AXIS_MMS2 -> Master Memory Map-to-Stream (MM2S)

 S_AXIS_S2MM -> Slave Stream-to-Memory-Map (S2MM)

 S_AXIS_MMS2 -> Slave Memory Map-to-Stream (MM2S)

5 November 2017 Version 2.0 Page 33

Confidentiality: Public Distribution

The DMAs are also connected to the Zynq Processing System via S_AXI_HP (High-

Performance Slave Interface) that gives them direct access to the physical DDR RAM to

allow very fast memory transfers from the DDR to the IP Core and back to the DDR

RAM.

 S_AXI_HP (HP0, HP1, HP2, HP3) -> High Performance Slave Interface

Software Flow

The code flow to use the IP Core and DMAs is as follows.

We start by initializing the DMAs and DWT IP Core.

CfgPtr = XAxiDma_LookupConfig(XPAR_AXI_DMA_0_DEVICE_ID);

XAxiDma_CfgInitialize(&axiDma0,CfgPtr);

CfgPtr = XAxiDma_LookupConfig(XPAR_AXI_DMA_1_DEVICE_ID);

XAxiDma_CfgInitialize(&axiDma1,CfgPtr);

CfgPtr = XAxiDma_LookupConfig(XPAR_AXI_DMA_2_DEVICE_ID);

XAxiDma_CfgInitialize(&axiDma2,CfgPtr);

CfgPtr = XAxiDma_LookupConfig(XPAR_AXI_DMA_3_DEVICE_ID);

XAxiDma_CfgInitialize(&axiDma3,CfgPtr);

CfgPtr=XWavelet_multiple_outputs_LookupConfig(XPAR_WAVELET_MULTIPLE_OUTPUTS_0_DEVICE_ID);

XWavelet_multiple_outputs_CfgInitialize(&waveletFilter0,CfgPtr);

Then we flush the cache to avoid sending garbage to the IP Core.

Xil_DCacheFlushRange((u32)m_dma_buffer_Src,SIZE_ARR*sizeof(u8));

Then the IP Core is started and the DMAs are instructed to start transferring data.

XWavelet_multiple_outputs_Start(&waveletFilter0);

XAxiDma_SimpleTransfer(&axiDma0,(u32)m_dma_buffer_Src,SEND_BLOCK*sizeof(u8),XAXIDMA_DMA_

TO_DEVICE);

XAxiDma_SimpleTransfer(&axiDma0,(u32)m_dma_buffer_Dst0,RECV_BLOCK*sizeof(u8),XAXIDMA_DEVI

CE_TO_DMA);

XAxiDma_SimpleTransfer(&axiDma1,(u32)m_dma_buffer_Dst1,RECV_BLOCK*sizeof(u8),XAXIDMA_DEVI

CE_TO_DMA);

XAxiDma_SimpleTransfer(&axiDma2,(u32)m_dma_buffer_Dst2,RECV_BLOCK*sizeof(u8),XAXIDMA_DEVI

CE_TO_DMA);

XAxiDma_SimpleTransfer(&axiDma3,(u32)m_dma_buffer_Dst3,RECV_BLOCK*sizeof(u8),XAXIDMA_DEVI

CE_TO_DMA);

We wait for the DMAs and IP Core to finish the work.

Page 34 Version 2.0 5 November 2017

Confidentiality: Public Distribution

while(XAxiDma_Busy(&axiDma0,XAXIDMA_DEVICE_TO_DMA));

while(XAxiDma_Busy(&axiDma1,XAXIDMA_DEVICE_TO_DMA));

while(XAxiDma_Busy(&axiDma2,XAXIDMA_DEVICE_TO_DMA));

while(XAxiDma_Busy(&axiDma3,XAXIDMA_DEVICE_TO_DMA));

And then we invalidate the cache to avoid reading garbage.

Xil_DCacheInvalidateRange((u32)m_dma_buffer_Dst0,SIZE_ARR_OUT*sizeof(u8));

Xil_DCacheInvalidateRange((u32)m_dma_buffer_Dst1,SIZE_ARR_OUT*sizeof(u8));

Xil_DCacheInvalidateRange((u32)m_dma_buffer_Dst2,SIZE_ARR_OUT*sizeof(u8));

Xil_DCacheInvalidateRange((u32)m_dma_buffer_Dst3,SIZE_ARR_OUT*sizeof(u8));

7.4 UPCOMING ACTIONS

The following major actions will be performed by the final release:

Action 1. Extension of available IP Cores.

5 November 2017 Version 2.0 Page 35

Confidentiality: Public Distribution

8. INNOVATIONS BEYOND THE STATE-OF-THE-ART

The tools that were presented in Sections 2-7 (the Monitoring and Resource

Management Framework, the PHANTOM FPGA Linux Environment, the PHANTOM

IP Core Marketplace) are results of the PHANTOM project partners’ work undertaken

for Tasks 4.1 – 4.4 of Work Package 4.

The development is based on a) outcomes of the past projects like Excess, DreamCloud,

or JUNIPER, b) PHANTOM partners’ owned open-source developments, but required

a substantial improvement to address i) the heterogeneous landscape of the hardware

resources (CPUs, GPUs, FPGAs, SoCs) and ii) the requirements of the PHANTOM

exemplary use case applications.

The following subsections highlight the specific innovations endorsed by the work of

the PHANTOM partners, description of the major developments and future roadmaps.

8.1 THE MONITORING CLIENT

8.1.1 Short summary of major innovations

Unified heterogeneous embedded hardware monitoring. Monitoring of

heterogeneous hardware environment (CPU, GPU, FPGA, SoCs, etc.) can be

performed as easily as of homogeneous infrastructures thanks to the flexible and

modular design of the Monitoring Client architecture with configurable plug-ins, that

correspond to the specific type of devices but endorse unified (service-oriented)

interfaces. Dedicated plug-ins were developed to support SoC architectures (pure FPGA

support is upcoming work). Each plug-in defines a set of metrics to be collected for

each specific device type (CPU, GPU, etc.). Already developed plug-ins can be easily

extended to support new devices. The Monitoring Client provides a platform for the

integration of diverse plug-ins.

Measurement of the real energy consumption of the embedded, GPU-hosting, and

FPGA-hosting devices. Unlike alternative solutions, which apply sampling-based

techniques and estimations (all tools that rely on RAPL, PCM and other counters) at the

processor-level only (!), the PHANTOM solution enables a true analysis of the power

and energy metrics of the complete hardware device (or board, for the case of an

embedded system) by leveraging the integration with the external high-precision

measurement devices like ACME. The advantage of the employed measuring procedure

over the other monitoring tools (like Zabbix, Nagios, etc.) is that the data collected

represent the real values while data of the other tools are generated from estimations.

Such estimations might be errorneous and include a bin error margin due to they are

calculated from similar hardware on a similar set of applications; the estimations can

also be erroneous when the hardware contain even minimal changes (like another

memory module).

Security auditing additions. System auditing gathers selectable security-relevant

events from trusted system software into a log in persistent store. PHANTOM unifies

Page 36 Version 2.0 5 November 2017

Confidentiality: Public Distribution

application, optimization, and security logging into a common framework and achieves

economy of mechanism by implementing them with common mechanisms.

8.1.2 Background technologies utilized in development

The Monitoring Client is generally based on the solution proposed for the DreamCloud
3

and Excess projects (under the code-name ATOM), which were substantially extended

to meet the specific requirements of the PHANTOM applications and the PHANTOM

platform (see Figure 14). Table 6 lists the PHANTOM-specific extensions.

Figure 14: Evolution of the ATOM Monitoring Framework functionality: The grey part repre-
sents the activities performed by EXCESS project, green – JUNIPER, red – DreamCloud, blue -

PHANTOM

3
 http://www.dreamcloud-project.org/

http://www.dreamcloud-project.org/

5 November 2017 Version 2.0 Page 37

Confidentiality: Public Distribution

Table 6: Contributions of previous projects to the Monitoring Client development and
PHANTOM extensions

Component Key Feature EXCESS
Dream

Cloud
JUNIPER Phantom

Monitoring

Client

Core development

Monitoring at application level

Heterogeneous systems support ()

Highly-accurate time measure-

ments

Support of additional user-

defined metrics specific to their

applications

Workflows support

Plug-ins

hw_power

Energy cons. measures of em-

bedded devices from external

sensor

Infiniband

Meminfo

Movidius

Xilinx FPGAs ()

Nvidia

Papi

Rapl

Sensors

Vmstat

iostat-bash

Nvidia-bash

Vmstat-bash

Security Audit Monitoring ()

(): Planned for the full prototype; : Already complete for the early prototype

: To be re-implemented in PHANTOM

Page 38 Version 2.0 5 November 2017

Confidentiality: Public Distribution

8.1.3 Summary of new technologies/extensions developed

Application-level monitoring (contribution to Task 4.3)

PHANTOM use case applications require measurement of the load at the application

level. That means that it should be possible to derive the fraction of the resource usage,

consumed by a specific application (regardless of the other applications running on the

same node/device).

For the implementation of this functionality in the Monitoring Library (see D2.1), the

Monitoring Client required an extension of the solution of the ATOM Monitoring

Framework (developed in EXCESS and DreamCloud), which can monitor the load of

the complete system only (i.e. at the system-level instead of the required application-

level).

The innovation supports the measurements of individual applications and their

components which are allocated to (different) devices. This information is queried from

different sources – such as the OS (knowing the ids of processes and threads that are

associated with the specific application run) or hardware counters.

Time granularity of measurements (contribution to Task 4.3)

PHANTOM use case applications require measurement time accuracy of the orders of

hundreds of microseconds. However, the existing frameworks (also the EXCESS and

DreamCloud monitoring solutions) can only guarantee the accuracy in the order of tens

of milliseconds, due to being based on the OS information only. PHANTOM improves

the original solution by obtaining the timing information directly from the hardware

counters of the CPU, and not from the OS, like before. This provides a time accuracy in

the order of few microseconds. Next table shows a typical accuracy of different

measuring methods.

Table 7 Typical resolution of each measuring time method
4
.

Method Typical Resolution Typical Accuracy Granularity Difficulty of Use

stop-watch 0.01 sec 0.5 sec program Easy

Date 0.02 sec 0.2 sec program Easy

Time 0.02 sec 0.2 sec program Easy

prof and gprof 10 msec 20 msec subroutines moderate
<----- without the im-
provements at
PHANTOM

clock() 15-30 msec 15-30 msec statement Moderate

software analyzers 10 µ sec 20 µ sec subroutine Moderate

timer/counter
chips

0.5-4 µ sec 1-8 µ sec statement Hard
<----- Improved version
at PHANTOM

logic or bus ana-
lyzer

50 nsec half µ sec statement Hard

4
 Measuring Execution Time and Real-Time Performance, David B. Stewart, Pages 1-15, Embedded Systems Conference Boston, Sept. 2006

http://www.inhandelectronics.com/wp-content/uploads/2013/03/Measuring-Real-Time-Performance.pdf

5 November 2017 Version 2.0 Page 39

Confidentiality: Public Distribution

External power measurement systems support (contribution to Task 4.1)

Added support for ACME and BeagleBone Black boards (to specifically address

embedded and small systems due to the maximum supported the load of 6A and

20.5V, in order of 100W). This is a portable device about 8,5 cm x 5,5cm and

39gr. It can run Linux OS, software, and buffer the measurements if the network

does not allow sending the data. The previous projects (EXCESS) relied on an

integrated PCIE analog to digital converter
5

, which cannot be used with

embedded devices or any other without a PCIE slot.

Security Auditing advances (minor contribution to Task 4.3 and Task 2.1)

PHANTOM provides a security auditing service both for system use and for use

by applications. System auditing gathers selectable security-relevant events from

trusted system software into a log in persistent store. The design incorporates

decisions to provide special protections to system auditing over other monitoring

services, including, a special handler for system auditing, the ability to select

events to be audited from a set of auditable events, distinct storage locations,

auditing or the starting and stopping of the audit service, auditing the change of

handler function, auditing the change of log location, and minimized potential

loss of audit records. Flexibility is achieved with the ability to save audit event-

specific data.

A client module, included into the Monitoring Client, provides an auditing API

for security-enforcing and security-relevant software to invoke the auditing

services that are available to both system-level software and applications. The

API is used for system-level auditing to report each noted occurrence of events,

from a configurable list of security-relevant events, to the audit system for

potential recording in the system audit log. Applications are provided with the

same framework for application-defined audit logging, which is provided at a

best-effort level-of-service to prevent application-level denials of service to

guaranteed system-level audit logging. Further details of the preliminary audit

specification are provided in Appendix IV.

8.1.4 Early/Full Prototypes functionality

Table 8 summarizes the already developed functionality/features of the PHANTOM

Monitoring Client and lists the upcoming actions.

5 PCI- Express analog I/O board ACPIe-3121: url http://addi-data.com/products/pc-cards/pci-express-boards/pci-express-boards-analog/pci-

express-analog-io-board-apcie-3121-apcie-3123/

http://beagleboard.org/black
http://addi-data.com/products/pc-cards/pci-express-boards/pci-express-boards-analog/pci-express-analog-io-board-apcie-3121-apcie-3123/
http://addi-data.com/products/pc-cards/pci-express-boards/pci-express-boards-analog/pci-express-analog-io-board-apcie-3121-apcie-3123/

Page 40 Version 2.0 5 November 2017

Confidentiality: Public Distribution

Table 8: Monitoring Client functionality development roadmap

Feature/Functionality

Target for Release

Early Prototype

[M18]

Full Prototype

[M33]

Heterogeneous HW support

 CPUs and Embedded ARM boards

 GPU (NVidia)

 FPGA (Zynq)

Integration of Monitoring Library

Highly-time accurate measurements

Support of external power monitoring

equipment

Security Auditing API and

implementation

8.2 THE MONITORING SERVER

8.2.1 Short summary of major innovations

Distributed server architecture required for high performance and scalability of

monitoring and analytics. The PHANTOM Monitoring Server design targets

distributed databases, thus eliminating scalability bottlenecks that are pertained to big

systems like HPC, with a big number of Monitoring Clients that need to be

simultaneously supported. The ElasticSearch database allows a decentralized

monitoring, i.e. when the instances of the Monitoring Server are installed on the same

hardware as the Monitoring Clients, is also possible in such distributed design.

Support of security auditing. Along with the infrastructure- and application-specific

metrics, security audit events can be stored and analyzed in the monitoring database.

Support of push subscription mechanism for retrieval of monitoring events. The

PHANTOM Monitoring Server will provide a push service and subscription method to

accessing the monitoring database (unlike the traditional approaches based on constant

pulling), which among others it will reduce the traffic between the database and the

clients and simplifies development of the back-end analysis and visualization tools.

5 November 2017 Version 2.0 Page 41

Confidentiality: Public Distribution

Integration of NodeJS - JavaScript-based analytics on the collected data. The

PHANTOM Monitoring Server allows the execution of Java scripts directly at the

location of the stored data (collected data from different nodes and/or different tasks) in

order to avoid unnecessary traffic and improve the analytics performance of the

analytics tools and algorithms. Such analytics was previously performed on the client-

side; however, in that case, the data can be considered only from a single experiment

and no aggregation across all other experiments was possible.

Support of micro-analytics functions in the user’s queries. The PHANTOM

Monitoring Server is able to execute some plain analytics functions (such as

min/max/average search) on the submitted data right from the user’s queries to it.

8.2.2 Background technologies utilized in development

The ATOM Monitoring Server, similarly to the Monitoring Client, is generally based on

the solution proposed for the DreamCloud
6

 and Excess projects, which were

substantially extended to meet the specific requirements of the PHANTOM applications

and the PHANTOM platform (see Figure 14 in the previous Monitoring Client section).

Table 9 lists the PHANTOM-specific extensions for the Monitoring Server.

Table 9: Contributions of previous projects to the Monitoring Server development and
PHANTOM extensions

Component Key Feature EXCESS
Dream

Cloud
JUNIPER Phantom

Monitoring

Server
Core development

 Data export

 Data push service ()

 Security auditing ()

 Distributed server

Web inter-

face
Visualization

 Public hosting

RESTful

API
Core API

 Data analytics ()

Support the decision making for

heterogeneous systems
 ()

 Extended API for workflows

 Energy reports

 Statistics API

 Progress tracking

(): Planned for the full prototype; : Already complete for the early prototype

6
 http://www.dreamcloud-project.org/

http://www.dreamcloud-project.org/

Page 42 Version 2.0 5 November 2017

Confidentiality: Public Distribution

8.2.3 Summary of new technologies/extensions developed

A push-based subscription mechanism to obtain new events is being implemented

for the clients (supervising components of the PHANTOM platform) - a major

contribution to task T4.3.

This mechanism was not available in the previous projects. However, this feature is

required for the PHANTOM platform, because some tools such as the Multi-

Objective Mapper need to constantly poll the monitoring database for new data,

which might cause network congestions if the application takes a longer time to

complete. It can be realized using frequent requests from them, but this strategy

would result in unnecessary bi-directional data traffic (even if there is not new data)

and then generate unnecessary load on the data server. Therefore, we are

implementing a mechanism based on WebSockets that allows subscribing to the

changes on the data whenever needed. Our implementation proposal consists of

keeping a register of the previously received data and updating it with newly

received records based on subscriptions. Notice that the server only sends update

modifications messages of those tables to destinations that are subscribed to the

event. It means that some processing is required on update messages, which are in

JSON format. The subscription will be easy to perform as the following websocket

request:

ws://server:ws_port/database/table/_changes

Support of analytics functions on the monitoring data. Monitoring relies on data,

that are being dynamically collected by special Monitoring Clients for the

(heterogeneous) infrastructure devices and also for the applications running on those

devices (facilitated by a special Monitoring Library, see D2.1). Even for relatively

simple hardware infrastructure configurations, the amount of the collected data can

easily reach the amount of approx. 1GB per day per the simplest monitored device

(as for the low-power ARM-based Odroid system, shown in the review). The

application-specific monitoring can be much larger (e.g. for the pilot HPC use case

prototype approx.. 50MB are collected per run).

All collected data are stored in the Monitoring Database – permanently, in order to

allow the further analytics on them. The analytics is required by the supervising

components of the PHANTOM platform, such as the Multi-Objective Scheduler, in

order to identify the hardware utilization profiles of the specific components of a

PHANTOM application (note that the components of the same application can be

executed on different, heterogeneous devices). A typical example of the analytical

operation is the calculation of the maximum, minimum, and the average utilization

of the heterogeneous hardware during the execution of the application, such as the

CPU, memory, I/O, network load or even cache misses etc.

Given the large size of data and the complexity of the data structures in the

Monitoring Database as well as aiming to reduce the amount of communication

overhead between the PHANTOM platform components, such analytic operations

have to be performed on the Monitoring Database side. In order to facilitate the data

analytics, the Monitoring Server provides means for both Macro- and Micro-Level

5 November 2017 Version 2.0 Page 43

Confidentiality: Public Distribution

analytics: the Macro-level analytics can be implemented directly on premises of the

Monitoring Server with JavaScript (NodeJS scripts), and the Micro-level can be

implemented by means of injection of Groovy, JavaScript or Python scripts into the

queries to the Monitoring Server.

Micro-level analytics will provide the advantage of the easy extension of the

already implemented analytics by the users who have no access to the Monitoring

Server (similarly to JavaScript on the HTTP pages). The micro-level analytics will

allow to embed the user-defined functions into the queries to the Monitoring

Database. As an example of an embedded script, see Listing below.

Listing 14: Example of micro-analytics query

curl -XGET 'http://server/database/table/_ search?&pretty=true&size=3' -d '{

"query": { "match_all": {} },

"sort": {
"script" : "ctx.table.field1 += param1",

"script_lang" : "groovy",

"script_params" : {

"param1" : 1

},"order" : "asc"

}

}'

Support of security auditing. A server plug-in that permits generation and

storing of security audit events in a distinct security audit log is a novel aspect of

the design. The security audit module is realized through the extensibility of the

Monitoring Framework, and provides security auditing services both to system

software with guarantees, and to potential application-specific auditing with best

effort. For system-level auditing, a set of auditable events are defined, and may

be selected by an administrative API for audit capture by the server, which may

also generate alarms based on the occurrence of event patterns. The unification

of security auditing services with the Monitoring Framework is the principal

innovation of this approach. By extending and leveraging the monitoring

infrastructure, security auditing features can be provided with an economy of

mechanism. Further details of the preliminary audit specification are provided in

Appendix IV.

8.2.4 Early/Full Prototypes functionality

Table 10 summarizes the already developed functionality/features of the PHANTOM

Monitoring Server and lists the upcoming actions.

Page 44 Version 2.0 5 November 2017

Confidentiality: Public Distribution

Table 10: Monitoring Server functionality development roadmap

Feature/Functionality

Target for Release

Early Prototype

[M18]

Full Prototype

[M33]

Push-based subscription to new events

notification

Data analytics with JavaScript

Micro-analytics function execution for

the use queries

Security Auditing

Integration with the other components

of PHANTOM platform

 Basic

 Advanced

8.3 THE RESOURCE MANAGEMENT SERVICE (SUPERVISOR)

8.3.1 Short summary of major innovations

Unification of the monitoring and the resource management by implementing

them with common mechanisms. In PHANTOM, a common technological platform,

served by the Monitoring Framework, is used for both monitoring and resource

management. For the resource management, such a unification enables a more light-

weight architecture, a better performance (due to immediate availability of real data

from the infrastructure), a more service-oriented design with numerous benefits for the

users (in terms of simplified integration of external tools with the Resource Manager) as

well as for the other tools of the PHANTOM platform (in terms of quick accessing to

the resource configuration via a common data layer).

Status tracking of all logical units of the heterogeneous hardware. The PHANTOM

Resource Management Service is designed to enhance any native RM software (like

SLURM for HPC or OpenStack for Cloud or any RTOS for embedded) with the useful

insight into all components of the heterogeneous hardware (for a plain CPU – at the

core-level, or with the hosted GPU or/and FPGA). The resource manager relies on the

monitoring capabilities and leverages the concept of dynamic resource management –

i.e. there is no static schema with the information about the resource status; on the

5 November 2017 Version 2.0 Page 45

Confidentiality: Public Distribution

contrary, all information on utilization and energy consumption of the hardware can be

retrieved in real-time and used to control the heterogeneous infrastructure.

Application management. The PHANTOM Resource Management keeps track of all

applications, running in the supervised heterogeneous hardware environment and makes

it available to all other tools of the PHANTOM platform via the Monitoring Server

services.

Ahead-of-time resource reservation support. The PHANTOM Resource Manager is

designed as a reactive component – it can not only respond to queries with requests

about the resource status, but also accept the reservation requests from the applications

for future allocations (e.g. in order to enforce the locality of data processing).

GPU Monitoring instrumentation at the application level. At the Excess project was

used a multiple channel ADC card for measuring the energy consumption of the Nvidia

GPUs. Instead of that, at the current project, we consider using the Nvidia Management

Library (NVML) for monitoring at the application level. The instrumentation of the

GPU monitoring (based on the GPU internal power management) will allow registering

the availability and ahead-of-time resource reservation of the GPUs.

Open interfaces that facilitate the integration with native RM software. Whether

SLURM or OpenStack, the PHANTOM Resource Manager will provide extensions to

get access to the smallest details of the managed hardware, leveraging the monitoring

capabilities.

8.3.2 Background technologies utilized in development

The PHANTOM Resource Management software is delivered as a part of the

Monitoring Framework due to a number of overlapping requirements to the underlying

software, such as the data layer, the service layer, etc.

It is a development started from scratch and leveraging the service-oriented design

approach of the monitoring framework. The previous projects (like aforementioned

DreamCloud and EXCESS) although offered some resource management capabilities

but they were pretty rudimental (e.g., only a static resource allocation schema was

provided) and have no use for a heterogeneous environment.

8.3.3 Summary of new technologies/extensions developed

 Started the implementation status tracker for heterogeneous infrastructure

testbed (major contribution to task T4.4)

 Developed templates for registering a new device in the infrastructure (major

contribution to task T4.4)

 Started the implementation of the application manager for PHANTOM

applications (major contribution to task T4.4)

Page 46 Version 2.0 5 November 2017

Confidentiality: Public Distribution

 Developed RESTful interfaces to access resources/applications status (major

contribution to task T4.4)

 Started the implementation resource management library for controlling

advanced reservation programmatically from the application or a management

script (major contribution to task T4.3)

8.3.4 Early/Full Prototypes functionality

Table 11 summarizes the already developed functionality/features of the PHANTOM

Resource Manager and lists the upcoming actions.

Table 11: Resource Manager functionality development roadmap

Feature/Functionality

Target for Release

Early Prototype

[M18]

Full Prototype

[M33]

Resource Tracker

 CPUs

 GPUs

 FPGAs

 SoCs

Application Management

 Basic version (simple status

tracking)

 Enhanced version (with

submission interface)

Management Scripts

 Elaboration of regulation setting

for all HW types

 Implementation of scripts for

applying the regulation settings

5 November 2017 Version 2.0 Page 47

Confidentiality: Public Distribution

8.4 THE PHANTOM FPGA LINUX ENVIRONMENT

8.4.1 Short summary of major innovations

The FPGA Linux environment was developed by the University of York. Work in this

area aims to allow efficient exploitation of FPGA platforms by non-experts. The

following details are entirely automated by the environment.

 Creation of kernels, bootloaders, and root file systems.

 Libraries for interaction between Linux software and IP cores.

 The FPGA design containing requested IP cores.

 Monitoring sensors for the platform.

 PHANTOM Communication Libraries to allow the board to communicate with

the rest of the PHANTOM application.

8.4.2 Background technologies utilized in development

The hardware generation makes use of FPGA vendor tools to compile the design.

8.4.3 Summary of new technologies/extensions developed

Definition of the PHANTOM IP core hardware interface which allows standardized

IP cores from the marketplace to be automatically formed into an FPGA design, based on

mappings from the Multi-Objective Mapper.

Definition and implementation of the PHANTOM IP core software interface, which

allows userland software to interact with PHANTOM IP cores, including programming

and querying the FPGA logic.

Implementation of the PHANTOM Communications API for the embedded Linux

target. Based on MPI, this allows FPGA boards to be integrated as part of the PHANTOM

platform.

Implementation of scripts and programs which automatically create FPGA designs

from PHANTOM IP cores. The platform can, in response to a decision from the MOM,

automatically create an FPGA design for a range of target FPGAs that includes the

appropriate cores. Also generated is the required metadata for the userland software

libraries.

Implementation of scripts and programs to build a reference Linux distribution,

including required kernels and bootloaders, to allow deployment of the PHANTOM

platform across a range of FPGA targets.

Page 48 Version 2.0 5 November 2017

Confidentiality: Public Distribution

8.4.4 Early/Full Prototypes functionality

The early prototype environment already performs all features listed in section 8.4.1.

The next prototype will extend functionality in the following areas:

Investigation and implementation of further monitoring capabilities. Aim to

provide information on the bandwidth usage of various busses on the FPGA,

specifically the memory contention, and the links between CPU and FPGA logic.

Investigation and implementation of further security capabilities. A range of

potential security improvements can be investigated, such as providing better support

for clearing memory, and providing physical isolation on the FPGA logic fabric.

Implement support for UltraScale+ boards. Currently, only Zynq-based boards are

supported. Support for UltraScale+ boards would add a large number of additional

supported targets.

Online operation. The full prototype will be extended to dynamic mapping to work

online in response to runtime monitoring where possible. Dynamic migration will not be

attempted, as this is focused on very long running tasks, due to the long run time of

FPGA compilation. Instead, application components will be redeployed between system

nodes.

5 November 2017 Version 2.0 Page 49

Confidentiality: Public Distribution

8.5 THE PHANTOM IP CORE MARKETPLACE

8.5.1 Short summary of major innovations

The IP Core Marketplace exposes the IP cores as components to the end user. The user

can check, in the Marketplace, what algorithms are available as components, to be used

in the FPGA without effort, and choose if one or more IP cores can be applied to his/her

specific application. The user only needs to annotate their source code with a pragma

informing the PHANTOM Platform to use a FPGA version of the component instead of

the normal software version.

Although the IP cores are developed in a FPGA-based design flow, they are generic

implementations of common algorithms. This means that from the end user perspective

the FPGA IP cores are seen as components that implement a specific algorithm and can

be reused in different applications. Each IP core corresponds to a component and

several different IP cores can be deployed in a single FPGA, making the system very

versatile.

The integration and deployment of IP Cores in the FPGA is done automatically by the

scripts included in the PHANTOM Linux Software Distribution, which also includes

the various security and monitoring requirements of the PHANTOM platform. The

MOM chooses, for a specific application, which components should run in the FPGA

and invokes the proper scripts, from the PHANTOM Linux Software Distribution, to

create a FPGA implementation, that has the needed components/IP cores. The

PHANTOM Linux Software Distribution scripts create a design and the proper

interfaces to use these IP cores, synthesizes and implements the FPGA design to

generate a bitstream for configuring the FPGA. It also takes care of exposing the IP

cores, as Userspace I/O (UIO) devices on the Linux side, that are then used by the

application, as components that communicate via MPI, just like the software

components, from a user’s perspective.

At first, this integration was done manually, as it is state-of-the-art and required a

significant effort to correctly expose the IP Cores on the Linux side, available to use by

any application. After this was successfully achieved it allowed the creation of scripts to

automatize the integration process. Now, all the integration, from IP core, to FPGA

design and synthesis, to Linux integration is done without the user

intervention/knowledge.

8.5.2 Background technologies utilized in development

For the development of IP Cores, the Xilinx tools were used: Vivado, Vivado HLS, and

Xilinx SDK.

For the Linux integration, the Petalinux tools were used.

For the first set of optimized IP Cores, a generic implementation of DWT (Discrete

Wavelet Transform) was used as a starting point.

Page 50 Version 2.0 5 November 2017

Confidentiality: Public Distribution

8.5.3 Summary of new technologies/extensions developed

 FPGA IP cores integration with Linux via Userspace I/O, Normally the FPGA/Linux

integration is done using AMBA (Advanced Microcontroller Bus Architecture).

 DWT IP Core with performance enhancements vs Vivado HLS generation.

Improvement went from 1118 ns per pixel to 5 ns per pixel of processing time.

8.5.4 Early/Full Prototypes functionality

In the Early Prototype the main focus was on GMV use case, and on the usage of

SIMONS application on an embedded environment (e.g. a Drone), where the execution

time of the SIMONS on ARM went from 70 minutes to 40 minutes using ARM plus

FPGA.

This was using DWT IP Core, which in the original implementation is invoked 10

times. The next step on GMV case is the addition of a highly optimized IP Core for the

Inverse DWT, which is expected to give even a bigger boost in time because it is

invoked 20 times in a single SIMONS run.

The next main functionality for the IP Core Marketplace will be the automatic

generation of PHANTOM Compatible IP Cores. The Marketplace will have an API that

will allow for arbitrary C code be injected and IP Cores with the proper interfaces will

be generated and make available in the Marketplace. This will be an exploratory work,

since some limitations are expected, either in the interfaces and in the performance.

5 November 2017 Version 2.0 Page 51

Confidentiality: Public Distribution

9. CONCLUSIONS

The deliverable presented the released version of the PHANTOM monitoring platform,

runtime environment for reconfigurable (FPGA) components, and resource management

framework. These components play an essential role for the PHANTOM software stack

and are used by the other PHANTOM components, e.g. by the Multi-Objective Mapper

(MOM). In particular, the Monitoring Framework provides useful insights in the

application performance and hardware utilization, which is essential for scheduling. The

FPGA Linux distribution enables using reconfigurable platforms in the same way as the

standard CPUs and GPUs require.

The purpose of the release was to provide preliminary versions of the components that

conform to the integration protocols of the PHANTOM platform and are stable enough

to enable further development of the platform. The basic description of the components

that are included in the preliminary release is supplied with the minimal necessary

documentation needed for their installation and testing. For the next releases, we aim to

considerably improve this documentation by creating handbooks and manuals with

more detailed and better-structured manuals.

In the remaining lifetime of the PHANTOM project, the components of the preliminary

release will be gradually improved according to the identified actions and provided in

the upcoming enhanced (D4.3 in M27) and final (D4.4 in M32) releases.

Page 52 Version 2.0 5 November 2017

Confidentiality: Public Distribution

APPENDIX 1. MONITORED METRICS

Table 12: List of metrics for standard CPU-based devices

category metrics methodology unit remarks

Application-
level

performance

execution
time

int
clock_gettime(CLOCK_REAL

TIME, struct timespec *tp)
ns

CPU execu-
tion time

int
clock_gettime(CLOCK_PROC

ESS_CPUTIME_ID, struct
timespec *tp)

ns

resources
utilization

CPU utiliza-
tion

(process cpu time
(/proc/[pid]/stat)) / (global

cpu time (/proc/stat))
%

http://stackoverflow.
com/questions/1420
426/calculating-cpu-
usage-of-a-process-

in-linux

RAM utiliza-
tion

VmRSS (/proc/[pid]/status) /
MemTotal (/proc/meminfo)

%

swap utiliza-
tion

VmSwap (/proc/[pid]/status) /
SwapTotal (/proc/meminfo)

%

virtual
memory

size
VmSize (/proc/[pid]/status) KB

IO
disk IO

throughput
(read_bytes + write_bytes) /

seconds (/proc/[pid]/io)
Bytes/

s
since kernel

2.6.20

power
power (with
given pid)

ptop (include CPU, memory,
disk, wireless network)

milli-
watt

Infrastructure-
level

performance

floating point
instructions
per second

PAPIF_flips Mflip/s

PAPI
floating point
operations
per second

PAPIF_flops
Mflop/

s

resources
utilization

CPU utiliza-
tion

total_cpu_time – idle_time
/ total_cpu_time (proc/stat)

%

https://github.com/L
eo-

G/DevopsWiki/wiki/
How-Linux-CPU-
Usage-Time-and-

Percentage-is-
calculated

RAM utiliza-
tion

(MemTotal – MemFree) /
MemTotal (proc/meminfo)

%

http://www.compute
rworld.com/article/2

722141/it-
manage-

ment/making-
sense-of-memory-

usage-on-linux.html

swap utiliza-
tion

(SwapTotal – SwapFree) /
SwapTotal (proc/meminfo)

%

IO
disk IO

utilization

(Field 10 (# of milliseconds
spent doing I/Os) in

/proc/diskstat) / (total time)
% https://www.kerne

l.org/doc/Docume
ntation/iostats.txt

(Field 11 (weighted # of milli-
seconds spent doing I/Os) in
/proc/diskstat) / (total time)

%

temperature
temp per

core
libsensors °c

network
network

throughput
(bytes_recv + bytes_trans) /

seconds (/proc/net/dev)
Bytes/

s

power

power
ptop (include CPU, memory,

disk, wireless network)
milli-
watt

power
external power measure-

ment hardware
milli-
watt

https://www.tindie.c
om/products/BayLib

re/acme-power-
measurement-kit/

5 November 2017 Version 2.0 Page 53

Confidentiality: Public Distribution

Table 13: List of metrics for accelerated GPU-based devices

category metrics methodology unit remarks

Application-
level

performance
execution

time

int
clock_gettime(CLOCK_REA
LTIME, struct timespec *tp)

ns

Infrastructure-
level

resources
utilization

GPU utili-
zation

utilization.gpu / 100
(nvmlDeviceGetUtilization-

Rates (nvmlDevice_t device,
nvmlUtilization_t *utilization))

%

Percent of
time over the

past sam-
pling period
during which
one or more
kernels was
executing on

the GPU.

GPU mem
accessing

rate

utilization.memory / 100
(nvmlDeviceGetUtilization-

Rates (nvmlDevice_t device,
nvmlUtilization_t *utilization))

%

Percent of
time over the

past sam-
pling period
during which
global (de-

vice) memory
was being

read or writ-
ten.

GPU
memory

total

Memory.total (nvmlDeviceGet-
MemoryInfo (nvmlDevice_t

device, nvmlMemory_t
*Memory))

bytes

GPU
memory

used

Memory.used (nvmlDeviceGet-
MemoryInfo (nvmlDevice_t

device, nvmlMemory_t
*Memory))

bytes

IO

PCIe
transmit

throughput

value / 0.020 (nvmlDevice-
GetPcieThroughput

(nvmlDevice_t device,
NVML_PCIE_UTIL_TX_BYTES,

unsigned int *value))

bytes/s

return bytes
transmitted
in 20 ms;

transform to
bytes/s

PCIe re-
ceive

throughput

value / 0.020 (nvmlDevice-
GetPcieThroughput

(nvmlDevice_t device,
NVML_PCIE_UTIL_RX_BYTES,

unsigned int *value))

bytes/s

return bytes
received in

20 ms;
transform to

bytes/s

temperature GPU temp

nvmlDeviceGetTemperature
(nvmlDevice_t device,

NVML_TEMPERATURE_GPU,
unsigned int *temp)

°c

power

GPU power
(for entire

board)

nvmlDeviceGetPowerUsage
(nvmlDevice_t device, unsigned

int *power)
milliwatt

power for
entire GPU

board

total power
ptop (power for CPU board) +

GPU power
milliwatt

Page 54 Version 2.0 5 November 2017

Confidentiality: Public Distribution

Table 14: List of metrics for reconfigurable FPGA-based devices

category metrics methodology unit reference

PS (Pro-
cessing
System)

Applica-
tion-
level

perfor-
mance

execution time
int clock_gettime

(CLOCK_REALTIME,
struct timespec *tp)

ns

CPU execution
time

int clock_gettime
(CLOCK_PROCESS_CP

UTIME_ID, struct
timespec *tp)

ns

re-
source
s utili-
zation

CPU utilization
(process cpu time

(/proc/[pid]/stat)) / (global
cpu time (/proc/stat))

%

http://stackoverflow.com/que
stions/1420426/calculating-
cpu-usage-of-a-process-in-

linux

RAM utilization
VmRSS

(/proc/[pid]/status) / Mem
Total (/proc/meminfo)

%

swap utilization
VmSwap

(/proc/[pid]/status) /Swap
Total (/proc/meminfo)

%

virtual memory
size

VmSize
(/proc/[pid]/status)

KB

IO
disk IO

throughput

(read_bytes +
write_bytes) / seconds

(/proc/[pid]/io)

Bytes/
s

since kernel 2.6.20

power
power (with
given pid)

ptop (include CPU,
memory, disk, wireless

network)

milli-
watt

Infra-
struc-
ture-
level

perfor-
mance

floating point
instructions per

second
PAPIF_flips

Mflip/
s

PAPI high-level API
floating point

operations per
second

PAPIF_flops
Mflop/

s

re-
source
s utili-
zation

CPU utilization
total_cpu_time –

idle_time / to-
tal_cpu_time (proc/stat)

%

https://github.com/Leo-
G/DevopsWiki/wiki/How-
Linux-CPU-Usage-Time-

and-Percentage-is-
calculated

RAM utilization
(MemTotal – MemFree) /

MemTotal
(proc/meminfo)

%

http://www.computerworld.co
m/article/2722141/it-

management/making-sense-
of-memory-usage-on-

linux.html

swap utilization
(SwapTotal – SwapFree) /
SwapTotal (proc/meminfo)

%

IO
disk IO utiliza-

tion

(Field 10 (# of milliseconds
spent doing I/Os) in

/proc/diskstat) / (total time)
% https://www.kernel.org/do

c/Documentation/iostats.t
xt

(Field 11 (weighted # of ms
spent doing I/Os) in

/proc/diskstat) / (total time)
%

temper-
ature

temp per core libsensors °c

net-
work

network
throughput

(bytes_recv +
bytes_trans) / seconds

(/proc/net/dev)

Bytes/
s

power power
ptop (include CPU,

memory, disk, wireless
network)

milli-
watt

PL (Pro-
gram-
mable
Logic)

Infra-
struc-
ture-
level

IO

read/ write
transactions

AXI performance monitor

num-
ber of

re-
quests

read/ write laten-
cy (avg)

AXI performance monitor

read/ write laten-
cy (std. Dev)

AXI performance monitor

read/ write
throughput

AXI performance monitor MB/s

PS + PL
infra-

structure-
level

power total power via UCD9248
milli-
watt

http://www.wiki.xilinx.com
/Zynq+Power+Managem

ent

5 November 2017 Version 2.0 Page 55

Confidentiality: Public Distribution

APPENDIX 2. MONITORING CLIENT’S PLUG-INS

Currently, the Monitoring Client supports 7 plug-ins, whose implementation and design

details are collected in the directory src/plugins. The monitoring client is designed to be

pluggable. Loading a plug-in means starting a thread for the specific plug-in based on

the users’ configuration at run-time. The folder src/agent plays a role as the main

control unit, as managing various plug-ins with the help of pthreads. Folders like

src/core, src/parser, and src/publisher are used by the main controller for accessorial

support, including parsing input configuration file (src/mf_config.ini), publishing

metrics via HTTP, and so on.

Board_power plug-in

This plug-in is dedicated to collect power metrics sampled by an external ACME power

measurement kit for a target platform. The ACME power measurement kit can be seen

as a compact solution composed of both the hardware and software

(http://baylibre.com/acme/). From hardware aspect, there are two key components: a

BeagleBone Black board as the main processing unit and an ACME cape as the

extension for multi-channel power measurements. The ACME software suite contains

an iio-daemon, which reads power measurements from the IIO (Industrial I/O) devices

and sends the data out continuously via Ethernet

(http://wiki.baylibre.com/doku.php?id=acme:start).

As shown in Figure 15, the Board_power plug-in runs on a hosting platform with the

ACME power measurement kit being accessible through given IP address. The target

platform, whose power consumptions are interested, is connected with the ACME

power measurement kit by the supported power probe. As the ACME power probe is

standard, the plug-in and ACME power measurement kit could be used as a generic

solution for all possible platforms.

Figure 15: Connection between ACME power measurement kit and the monitoring platform

http://baylibre.com/acme/
http://wiki.baylibre.com/doku.php?id=acme:start

Page 56 Version 2.0 5 November 2017

Confidentiality: Public Distribution

We use Libiio library for the plug-in’s implementation

(https://wiki.analog.com/resources/tools-software/linux-software/libiio). It is a library

that has been developed by Analog Devices to ease the development of software

interfacing Linux IIO devices. Since the iio-daemon running on the ACME kit supports

network backends, we use the Libiio APIs firstly to create a network context, before

filling IIO buffers and filtering the associated metrics.

CPU_perf plug-in

This plug-in measures performance-related metrics of CPUs in a fine granularity – per

CPU core. For each CPU core, the floating-point operations per second, floating-point

instructions per second, and total instructions per second are sampled and collected.

The implementation of the plug-in depends on essentially the PAPI hardware counters

and PAPI library (http://icl.utk.edu/papi/)

(http://icl.cs.utk.edu/projects/papi/wiki/Introduction_to_PAPI-C). It is advisory to check

at first if the required PAPI events are supported on the target platform, which are

PAPI_FP_OPS, PAPI_FP_INS, and PAPI_TOT_INS respectively.

CPU_temperature plug-in

The target of this plug-in is CPU’s temperature per CPU core. To achieve this, the

lm_sensors (Linux monitoring sensors) library is used

(https://wiki.archlinux.org/index.php/lm_sensors). It is a free and open-source tool

which provides interfaces for monitoring CPU’s temperature and thermal properties.

Linux_resources plug-in

This plug-in is implemented to retrieve run-time information about Linux kernel and

processes by using Linux provided /proc file system. The metrics supported include the

CPU utilization percentage, memory utilization percentage, disk I/O statistics and

network statistics.

We calculates the CPU utilization rate by dividing the CPU usage time by the total CPU

time, both of which can be derived from the file /proc/stat (https://github.com/Leo-

G/DevopsWiki/wiki/How-Linux-CPU-Usage-Time-and-Percentage-is-calculated).

Because that the values read directly from /proc/stat are time in cycles since system

boot, it is thus necessary to calculate at first the time passed by during an interval before

calculating the CPU utilization rate.

For memory monitoring, we read from /proc/meminfo the current total available

physical memory size, the unused physical memory size, the total amount of swap

available, and the total amount of swap free, in order to calculate the RAM usage rate

and the swap usage rate at the current time point

(http://www.computerworld.com/article/2722141/it-management/making-sense-of-

memory-usage-on-linux.html).

The total system disk I/O read and write bytes are derived by adding all read/write bytes

per process during the sampling interval, which can be read from the /proc/[pid]/io files

https://wiki.analog.com/resources/tools-software/linux-software/libiio
http://icl.utk.edu/papi/
http://icl.cs.utk.edu/projects/papi/wiki/Introduction_to_PAPI-C
https://wiki.archlinux.org/index.php/lm_sensors
https://github.com/Leo-G/DevopsWiki/wiki/How-Linux-CPU-Usage-Time-and-Percentage-is-calculated
https://github.com/Leo-G/DevopsWiki/wiki/How-Linux-CPU-Usage-Time-and-Percentage-is-calculated
http://www.computerworld.com/article/2722141/it-management/making-sense-of-memory-usage-on-linux.html
http://www.computerworld.com/article/2722141/it-management/making-sense-of-memory-usage-on-linux.html

5 November 2017 Version 2.0 Page 57

Confidentiality: Public Distribution

(https://www.kernel.org/doc/Documentation/iostats.txt). Then the system I/O

throughput can be retrieved by dividing the total amount of read/write by the time

interval. Similarly, we calculate the network throughput based on statistics read from

file /proc/net/dev (http://man7.org/linux/man-pages/man5/proc.5.html).

Linux_sys_power plug-in

With the help of Linux kernel and /proc file system, we implement this plug-in, which is

capable of power monitoring of various system components, including CPU, memory,

disk I/O, and wireless network.

The CPU power consumption is estimated by using a Linux module named as cpufreq-

stats (http://lxr.free-electrons.com/source/Documentation/cpu-freq/cpufreq-stats.txt)

(https://www.kernel.org/doc/Documentation/cpu-freq/cpufreq-stats.txt). It is a driver

that provides CPU frequency statistics for each CPU through its interface, which

appears normally in the directory /sysfs/devices/system/cpu/cpuX/cpufreq/stats. By

reading the values kept in the file time_in_state, we retrieve the amount of time spent in

each of the frequencies supported by the dedicated CPU. We assume that the

relationship between CPU frequency and power consumption is a linear correlation,

consequently it is feasible to estimate the average CPU power during an interval with

given minimum and maximum CPU power specifications.

For memory power estimation, we uses the system call “__NR_perf_event_open” to stat

the hardware cache misses (http://man7.org/linux/man-

pages/man2/perf_event_open.2.html). Together with reading the disk I/O read/write

statistics, we calculate the memory power consumption with the following formula. The

L2 cache miss latency and L2 cache line size can be obtained via some known calibrator

(http://homepages.cwi.nl/~manegold/Calibrator/calibrator.shtml).

Disk and wireless network power consumptions are calculated based on their activities,

like read/write and receive/send bytes during the sampling interval. As long as the

energy specifications of the disk and wireless network card are given, we could

compute the constants, like energy cost per disk read/write and energy cost per wireless

network receive/send, and get finally the energy consumed during a specific period.

Our implementation is based on the methodology proposed by the pTop project. Please

refer to the project web page for more details and information.

(http://mist.cs.wayne.edu/ptop.html)

(http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.7151)

NVML plug-in

The target of this plug-in is the Nvidia GPU, which is normally hosted by a connected

CPU. The plug-in, which runs on the hosting platform, uses the NVML (Nvidia

management library) provided C-based APIs to monitor the associated GPU devices’

https://www.kernel.org/doc/Documentation/iostats.txt
http://man7.org/linux/man-pages/man5/proc.5.html
http://lxr.free-electrons.com/source/Documentation/cpu-freq/cpufreq-stats.txt
https://www.kernel.org/doc/Documentation/cpu-freq/cpufreq-stats.txt
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
http://homepages.cwi.nl/~manegold/Calibrator/calibrator.shtml
http://mist.cs.wayne.edu/ptop.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.7151

Page 58 Version 2.0 5 November 2017

Confidentiality: Public Distribution

properties (https://developer.nvidia.com/nvidia-management-library-nvml). The metrics

supported by this plug-in, including GPU usage rate, GPU memory usage rate, PCIe

throughput, GPU temperature and GPU power consumption, depend on the models of

the GPU devices. For example, PCIe statistics are available only for Maxwell or newer

architectures (https://docs.nvidia.com/deploy/pdf/NVML_API_Reference_Guide.pdf).

RAPL_power plug-in

For Intel CPU an alternative method for power monitoring is by using this plug-in,

which is implemented with the help of RAPL (Running Average Power Limit) provided

energy and power information. RAPL, as clarified in the reference,

(https://01.org/zh/blogs/2014/running-average-power-limit-%E2%80%93-

rapl?langredirect=1) is not an analog power meter, but rather uses a software power

model to estimate energy usage by using hardware performance counters and I/O

models.

In general cases, RAPL domains cover both the CPU package (including core and

uncore devices) and the DRAM, as can be seen from Figure 16. However, the specific

RAPL domains available in a platform vary across product segments.

Figure 16: RAPL power measurements domains

https://developer.nvidia.com/nvidia-management-library-nvml
https://docs.nvidia.com/deploy/pdf/NVML_API_Reference_Guide.pdf
https://01.org/zh/blogs/2014/running-average-power-limit-%E2%80%93-rapl?langredirect=1
https://01.org/zh/blogs/2014/running-average-power-limit-%E2%80%93-rapl?langredirect=1

5 November 2017 Version 2.0 Page 59

Confidentiality: Public Distribution

APPENDIX 3. MOVIDIUS BOARD INTEGRATION IN MONITORING FRAMEWORK

Myriad2 general information

A high-level diagram of the Myriad2 platform architecture is shown in Figure 17. On

the Myriad2 platform, there are twelve 128-bit vector-processors units (SHAVE

processors), SIPP Hardware Accelerators, 2MByte on-chip SRAM (CMX), 64-bit

interface to DDR2/3 RAM running at up to 1033MHz and a range of other peripherals.

Besides, the two Leon4 RISC processors are used to manage execution: the RISC1 core

is designed to be real-time controller for scheduling the activity of Myriad2 while

RISC2 core is designed to run an operating system such as Linux or RTEMS and to

manage all the control interfaces. Each of the LEON4 cores also includes a fully

IEEE754 compliant FPU with fp64 support which allows the platform to provide native

fp64 support either standalone, or accelerated by the 12 on-board SHAVE processors

which natively support fp16 or fp32 but not fp64. Each SHAVE is connected to the

256kB 2-way L2 Cache and has 2 x 64-bit data ports to CMX memory as well as a 128-

bit instruction port. The SIPP Hardware Accelerators also have 16 x 2 x 64-bit data

connections into the CMX at the nominal system clock frequency of up to 800MHz,

delivering an aggregate 400GBytes/s of total bandwidth, necessary for sustained high

performance for many numerical applications.

Figure 17: Hardware architecture and components of Myriad2 platform

Myriad2 software development

Software development tools

The Myriad2 software development environment is shown in Figure 18. Included in the

MoviTools are its compiler, debugger, simulator, and so on, all developed by Movidius,

Page 60 Version 2.0 5 November 2017

Confidentiality: Public Distribution

as supporting Myriad2 various processors. The Movidius compiler now supports fully

the C/C++ language with various libraries included. The operating system on Myriad2

is RTEMS, which provides a multi-threaded, multi-tasking environment for

application’s threads sharing the same memory space. Within RTEMS each subsystem

is implemented as an independent manager (task, interrupt, clock, semaphore …). In the

system, required managers and applications are linked to one binary image. The system

includes also TCP/IP networking and local file-systems support.

Figure 18: Myriad2 software development tools and environment

Programming paradigms

According to different hardware and operating system’s availability, the programming

paradigms of Myriad2 platform can be classified into three types, shown in Figure xx-

xx respectively as follows.

Standard programming paradigm

The standard programming paradigm for Myriad2 involves using RTEMS running on

LeonOS and the SIPP scheduler on LeonRT. The advantage of this paradigm is that it

provides parallelization in an easy to use environment. The SIPP scheduler itself is able

to ensure parallel pipeline configurations for managing the HW filters and exterior

interfaces with a low footprint so as to ensure LeonRT optimized utilization. The SIPP

used number of SHAVEs is configurable, so any extra number of SHAVEs not used for

line based pipelines will remain free to be used by the RTEMS operating system

running on LeonOS for various other purposes including (but not limited to) computer

vision algorithms.

One Leon programming paradigm

Some applications might not require heavy line based processing. Such applications

might choose to completely switch OFF the LeonRT processor and instead only use

LeonOS with (or without) RTEMS. HW filters may still be used. Using this

programming paradigm, as shown in Figure 19, LeonOS would control all of the

applications running on the 12 SHAVE cores.

5 November 2017 Version 2.0 Page 61

Confidentiality: Public Distribution

Figure 19: Myriad2 standard programming paradigm

Figure 20: Myriad2 one Leon programming paradigm

Bare metal programming paradigm

A bare metal programming paradigm (cf. Figure 21) will also be supported by the

MDK build system. This will allow the developer to use both LEON cores

without any operating system, only minimal schedulers running to control the

pipelines application. This paradigm requires more integration efforts but allows

developers to write applications which will not be affected by any operating

system overhead.

Page 62 Version 2.0 5 November 2017

Confidentiality: Public Distribution

Figure 21: Myriad2 bare metal programming paradigm

According to users’ requirements and sensors availability on Myriad2, we implement

several functions for temperature and power monitoring and provide APIs for code

instrumentation of a generic Myriad2 application.

The board-specific metrics that are supported by the Monitoring Framework are listed

in Table 15.

Table 15: Metrics supported for Myriad2 platform

Type Metrics Units Description

Power

power_core mW
Power consumption of the cores and

processors

power_ddr mW Power consumption of DDR memory

Temperature

temperature_CSS °c

Temperature of the CPU SubSystem

(CSS), equals to the Leon RSIC2 proces-

sor

temperature_MSS °c

Temperature of the Media Sub System

(MSS), equals to the Leon RSIC1 proces-

sor

temperature_UPA0 °c

Average temperature of half of the Mi-

croprocessor Array (6 VLIW SHAVE

vector processors)

temperature_UPA1 °c

Average temperature of the other half of

the Microprocessor Array (the other 6

VLIW SHAVE vector processors)

The power monitoring is achieved based on the MV0198 power measurement daughter-

card, which is composed of 4 ADCs and samples 13 power rails and 2 voltage rails of

the Myriad2 motherboard MV0182. With the enabled I2C interface to the motherboard

5 November 2017 Version 2.0 Page 63

Confidentiality: Public Distribution

and drivers provided APIs for reading the measurements, we implement functions in C

to initialize the MV0198 driver and gather measurements periodically.

For temperature monitoring, we use the temperature sensor library provided in the Leon

RSIC2 operating system. As can be seen from Table 2, temperature metrics are divided

into four parts, which can be mapped to accordingly different hardware components.

For users convenience, we design and implement the application-level APIs for

Myriad2 platform same as these for other platforms. Listing below gives an example

shows how to use these APIs in a Myriad2 application.

Listing : Example of a Myriad2 application with integrated monitoring APIs

void POSIX_Init(void *args)

{

UNUSED(args);

/* NEED FOR USING ETHERNET */

initClocksAndMemory();

EthPHYHWReset();

InitGpioEth(INVERT_GTX_CLK_CFG);

initGrethAndNet();

/* SETUP METRICS */

metrics m_resources;

m_resources.num_metrics = 2;

m_resources.local_data_storage = 0; // TOD: local data storage

m_resources.sampling_interval[0] = 1000; // 1s

strcpy(m_resources.metrics_names[0], "power_monitor");

m_resources.sampling_interval[1] = 1500; // 1.5s

strcpy(m_resources.metrics_names[1], "temp_monitor");

/* START MONITORING */

mf_start("141.58.0.8", "movidius", &m_resources);

/* DO THE WORK */

sleep(15);

/* STOP MONITORING */

mf_end();

exit(0);

}

Function “mf_start” creates threads for monitoring power and/or temperature, which are

configured by setting the metrics’ names and sampling intervals. Each thread runs in a

loop, samples the specialized metrics, and uses the board’s network stack to send the

sampled metrics to the server. After execution of the target code block, “mf_end”

terminates the running threads and ends accordingly the metrics sampling process. It is

noted that the monitoring data are sent to the server via HTTP and hardware sockets,

therefore programmers should initialize and configure the system’s Ethernet module

properly before using the provided APIs.

Page 64 Version 2.0 5 November 2017

Confidentiality: Public Distribution

APPENDIX 4. SECURITY AUDITING SPECIFICATION

In this appendix is described the functions and auditable events of the security auditing API.

The Flexibility of the functions is achieved with the ability to save audit specific data for

different types of events, for both system-level software and application level.

The Security of the audit records and logs generated by the next functions and auditable

events environment are assumed to be protected from unauthorized access and tampering by

the operating environment. Concerns about the log that are justified in a particular

deployment may be addressed with one or more measures, such as disk or file system

encryption, transmitting the log data to a different host over a one-way (except for

handshaking) communication path or recording in a blockchain ledger.

The channels used to communicate audit data are assumed to be free from ease dropping and

tampering. In a particular deployment if it is determined that the channels cannot be trusted

then confidentiality and integrity controls can be implemented at the communication level.

System Auditable Events (this is the minimal list and will be added to)

The System Auditable Events can be generated by both system-level software and applica-

tion auditing levels The auditable events listed below, are the minimal list to be supported

and others may be added during the implementation.

 sys_audit_start

 sys_audit_stop

 sys_audit_log_assign

 sys_audit_monitor_assign

 sys_authentication_attempt

Functions of the security auditing API for the Application level:

The functions for supporting the security auditing instrumentation and their usage syntax are

brief described below.

 Audit record of an app event metric. It can be related to an auditable system event or an app

defined event.

monitor_server_call (<monitor type>, <monitor channel>, <monitor data>)

<monitor type> is an enumerated or atomic value: metric, sys_audit, app_audit, …

<monitor channel> is a differentiator within each <monitor type> such as

 <metric name> for monitor type metric

 <auditable event name> for monitor type sys_audit

 <app defined identifier> for monitor type app_audit

<monitor data> is a numeric value or a string (or a numeric value coded as a string) depend-

ing on <monitor type> and <monitor channel>.

5 November 2017 Version 2.0 Page 65

Confidentiality: Public Distribution

that in turn call monitor_server_call:

monitor_server_call(sys_audit, <auditable event name>, <event-specific data>)

or

monitor_server_call(app_audit, <app-defined event>, <event-specific data>)

respectively.

 Definition of the location of the storage of the records. This classification of the stored data fa-

cilitates its future management. Different analysis or users will have interest in different sets of

data.

monitor_log_assign(<monitor type>, <monitor channel>, <log location>)

It assigns <log location> to be the new destination for monitor records for the particular

<monitor type> and <monitor channel>.

<monitor channel> can be assign to “all” when it is wished to send all channels for the given

monitor type to the same location.

This function generates a sys_audit_log_assign event to old (if active) and new locations.

 Assignment of a function to process the calls for a give monitor type.

monitor_handler_assign(<monitor type>, <handler>)

registers <handler> to be invoked by the monitor server to process received call for the given

monitor type.

This function generates a sys_audit_monitor_assign event to the log.

 Convenience functions, I NOT UNDERSTAND ITS PURPOSE

 sys_audit_gen(<auditable event name>, <event-specific data>)

 app_audit_gen(<app-defined event>, <event-specific data>)

Functions of the security auditing API for the System level:

The functions defined above audit security only during the execution of applications.

Additionally, in the PHANTOM project, a system-level security auditing system is also de-

fined, which also allows the security record of the system to be maintained when no audited

application is being executed. The security record at system level can be active during the

entire operating time of the system.

The System audit-specific interfaces (some may apply also to application audit) and their

usage syntax are brief described below.

 Request system audition for a specific event list

audit_start(<audit selection>, <log location>)

Page 66 Version 2.0 5 November 2017

Confidentiality: Public Distribution

It causes auditing of the auditable events in <audit selection> to be started to <log location>.

Logging appends to the log location if it already exists. Generates a sys_audit_start event to

the log.

 Request end of any running system audition

audit_stop()

It causes auditing to stop. Generates a final sys_audit_stop event to the log.

 Request replacing the list of events being audited.

audit_select(<new audit selection>, <add, remove, replace>)

It changes the current audit selection with the <new audit selection> by adding, removing, or

replacing according to <add, remove, replace> argument.

 Setting an alarm configuration for a specified pattern.

audit_alarm(<pattern>, <alarm handler>)

The audit generation facility will test for the specified <pattern> and will invoke the <alarm

handler> if the pattern is recognized. The <pattern> is, at a minimum, a set of auditable

events in the same form as an audit selection. The intersection of the set of events in the pat-

tern and those in the current audit selection determines the events actually considered to

generate an alarm. The function may be used to reset the remembered pattern and handler to

the default values (typically “none”).

 Audit generation.

Audit generation – see sys_audit_gen interface defined above.

The sys_audit_gen function only accepts requests from security-relevant system software.

This prevents untrusted software from overwhelming the audit service and thereby causing a

denial of service. The sys_audit_gen function qualifies whether the first argument <auditable

event name> is in the list of events currently selected for auditing. If so, a time stamp is gen-

erated, and an audit record is generated with the following information and placed into the

audit buffer:

 Audit event name

 Source of the event

 Timestamp

 Event-specific data

Then the audit generation function tests whether the current qualified event completes the

current alarm pattern currently being monitored and if so invokes the current alarm handler.

 Audit Daemon.

Audit Daemon – empties the audit buffer in the monitoring server when it is full or after a

configurable interval of time since the last time the buffer was emptied.

