

Project Partners: Easy Global Market, GMV, Intecs, The Open Group, University of Stuttgart,
 University of York, Unparallel Innovation, WINGS ICT Solutions

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

PHANTOM Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the PHANTOM Project Partners.

Project Number 688146

D3.2 – Final report on programmer- and productivity-
oriented software tools

Version 1.0

4 September 2018

Final

Public Distribution

Easy Global Market, Wings ICT Solutions, HLRS,
Unparallel Innovation

D3.2 – Final report on programmer- and productivity-oriented software tools

Page ii Version 1.0 4 September 2018

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Easy Global Market

Philippe Cousin

2000 Route des Lucioles

Les Algorithmes Batiment A

06901 Sophia Antipolis

France

Tel: +33 6804 79513

E-mail: philippe.cousin@eglobalmark.com

GMV
José Neves

Av. D. João II, Nº 43

Torre Fernão de Magalhães, 7º

1998 - 025 Lisbon

Portugal

Tel. +351 21 382 93 66

E-mail: jose.neves@gmv.com

Intecs

Silvia Mazzini

Via Umberto Forti 5

Loc. Montacchiello

56121 Pisa

Italy

Tel: +39 050 9657 513

E-mail: silvia.mazzini@intecs.it

The Open Group

Scott Hansen

Rond Point Schuman 6

5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of Stuttgart

Bastian Koller

Nobelstrasse 19

70569 Stuttgart

Germany

Tel: +49 711 68565891

E-mail: koller@hlrs.de

University of York

Neil Audsley

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325571

E-mail: neil.audsley@cs.york.ac.uk

Unparallel Innovation

Bruno Almeida

Rua das Lendas Algarvias, Lote 123

8500-794 Portimão

Portugal

Tel: +351 282 485052

E-mail: bruno.almeida@unparallel.pt

WINGS ICT Solutions

Panagiotis Vlacheas

336 Syggrou Avenue

17673 Athens

Greece

Tel: +30 211 012 5223

E-mail: panvlah@wings-ict-solutions.eu

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Definition of TOC 03/05/18

0.2 Integration of first inputs from EGM, WINGS and HLRS 29/06/2018

0.3 Integration of updated inputs from EGM, HLRS and Unparallel 27/07/2018

0.4 QA for EC delivery 03/08/2018

0.5 Internal QA updates from UoY and Intecs 10/08/2018

0.6 Overall updates from EGM, WINGS, HLRS and Unparallel 17/08/2018

1.0 Final Version 04/09/2018

D3.2 – Final report on programmer- and productivity-oriented software tools

Page iv Version 1.0 4 September 2018

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Rationale and Motivation ... 1

1.2 Scope ... 2

1.3 Ambitions and Major Innovations .. 2

2. Parallelization Toolset ... 4

2.1 Use Case requirements ... 4
2.1.1 Initial Set of Requirements .. 4
2.1.2 Preliminary use case feedback from M18 results .. 4

2.2 Design Specifications ... 4

2.2.1 Code Analysis .. 4
2.2.2 Technique Selection .. 6
2.2.3 Background Tools ... 7

2.3 Implementation Details... 7
2.3.1 Code Analysis .. 7
2.3.2 CUDA API for deployment on GPU devices .. 9
2.3.3 Technique Selection .. 10

2.3.4 IP Core Generator .. 10
2.3.5 Preliminary testing results ... 11

2.4 Integration aspects ... 12

2.5 Innovations beyond the state-of-the-art .. 12

2.5.1 Summary of new technologies/extensions developed ... 12
2.5.2 Full Prototypes functionality ... 13

3. Programming Interface .. 15

3.1 Use Case requirements ... 15
3.1.1 Initial Set of Requirements .. 15

3.1.2 Preliminary use case feedback from M18 results .. 15

3.2 Design Specifications ... 15
3.2.1 Data Transfer Support ... 15

3.2.2 Shared Protocol ... 17
3.2.3 Queue Protocol .. 17

3.2.4 Signal Protocol .. 18
3.2.5 Mutex Protocol .. 18

3.2.6 Repository File Access API... 19

3.3 Implementation Details... 20
3.3.1 Shared Protocol ... 20

3.3.2 Queue Protocol .. 22
3.3.3 Signal Protocol .. 22

3.3.4 Mutex Protocol .. 23
3.3.5 Repository File Access API... 23

3.4 Integration aspects ... 24
3.4.1 Integration with the Deployment Manager .. 24

3.5 Innovations beyond the state-of-the-art .. 24
3.5.1 Summary of new technologies/extensions developed ... 24

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page v

Confidentiality: Public Distribution

3.5.2 Full Prototypes functionality ... 24

4. Model Based Testing ... 26

4.1 Use Case requirements ... 27

4.1.1 Initial Set of Requirements .. 27
4.1.2 Preliminary use case feedback from M18 results .. 27

4.2 Design Specifications ... 28
4.2.1 Early Validation... 29
4.2.2 Test Execution ... 31

4.3 Implementation Details... 33
4.3.1 Model validation .. 34
4.3.2 Performance estimation ... 35
4.3.3 Functional testing and non-functional testing ... 37

4.3.4 Implementation summary .. 44

4.4 Integration aspects ... 44
4.4.1 PHANTOM platform interfaces .. 45
4.4.2 MBT interaction flow with PHANTOM ... 45

4.5 Innovations beyond the state-of-the-art .. 46

4.5.1 Summary of new technologies/extensions developed ... 46
4.5.2 Full Prototypes functionality ... 47

5. Phantom Monitoring Library .. 49

5.1 Use Case Requirements .. 49

5.2 Design Specifications ... 49

5.2.1 Architecture ... 49

5.3 Implementation Details... 51

5.4 Integration aspects ... 52
5.4.1 Application-level APIs .. 52

5.5 Innovations beyond the state-of-the-art .. 53

5.5.1 Background technologies utilised in the development .. 54
5.5.2 Summary of new technologies/extensions developed ... 54
5.5.3 Source release and GIT repositories .. 55

6. Conclusion .. 56

References ... 58

Appendix 1. Initial Requirements of Parallelization Toolset .. 59

Appendix 2. Initial Requirements of Programming Interface .. 62

Appendix 3. Initial Requirements of Model Based Testing .. 64

Appendix 4. Testing Requirements of Use Cases ... 65

Appendix 5. Requirements of Monitoring Library.. 70

Appendix 6. Examples of Registering User Defined metrics .. 75

Appendix 7. Example of Monitoring A Multithread Application .. 77

D3.2 – Final report on programmer- and productivity-oriented software tools

Page vi Version 1.0 4 September 2018

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This document describes the final development of the PHANTOM tools and

technologies, which are achieved by the Parallelization Toolset, Programming

Interfaces, Model Based Testing and Monitoring Library components of the

PHANTOM platform.

Section 2 describes the Parallelization Toolset. Technologies and algorithms are

presented in this section for both the code analysis and the suitable techniques selection

for the preparation of the components for deployment. In particular, this section

describes the methodology used to produce parallelized versions of the components for

CPUs and GPUs, as well as the adoption of specific parallelization techniques based on

the deployment plan provided by the Multi-Objective Mapper. In the context of the

Parallelization Toolset, it also summarizes the development work on the IP Core

generator for FPGAs.

Section 3 introduces the PHANTOM Programming Interface to support the

development of PHANTOM applications. This section identifies and describes a set of

APIs following a component-based approach. These APIs use the C programming

language and allow the use of generic parallelization functionalities, addressing both

synchronization and data sharing mechanisms. They also provide support for any kind

of deployment allowing the interchange between different deployment plans without the

user‟s interference.

Section 4 reports the Model Based Testing (MBT). MBT in PHANTOM consists of two

mains phases, i.e., early validation and test execution, for functional and non-functional

testing. Early validation detects early design defects in parallel with application

development. Test execution thoroughly examines the PHANTOM applications by

executing test cases generated from MBT models. The main achievements of MBT in

PHANTOM lie in the MBT extension to test applications in embedded and parallel

environments and the specific strategies to test PHANTOM component-based

applications. Both early validation and test execution produce promising results, while

testing effectiveness and efficiency have been largely improved in PHANTOM.

Section 5 presents the Monitoring Library for application optimization based on non-

functional properties and hardware quality attributes. The PHANTOM Monitoring

Library abstracts users from the metric collection process. The major innovations are

identified for the Monitoring Library are 1) administrator to register the monitoring

configurations on heterogeneous systems, which frees the users of such task as well as

the necessary expertise to do it; 2) the Monitoring Library offers the users a set of light-

weight, hardware-agnostic APIs for injecting the instrumentation into the application

code, which provides a tight integration of the Monitoring Framework with the user

application; 3) highly customizable monitoring settings. The users can specify the

metrics to be automatically collected, the flush time interval, the configuration of

collected metrics, etc., independently for each application.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 RATIONALE AND MOTIVATION

In order to achieve the integrated cross-layer, multi-objective and cross-application

approach in PHANTOM, a number of components are designed and developed in

PHANTOM and the following four components are reported in this deliverable.

The Parallelization Toolset automatically parallelizes sequential application code.

Besides the typical parallelization in a standard environment, the Parallelization Toolset

is able to provide parallelized code for different environments including CPU, GPU

and FPGA platforms.

The application components communicate using the PHANTOM Programming

Interface included in the programming model. The transparency provided allows the

developer to express their application as an interacting set of components that

communicate over a common interface. Along with the adoption of the Programming

Model, the interface creates an integrated environment for the application to run. By

enforcing this model, the rest of the platform can operate on individual components by

deploying them in different locations (or to GPU devices or FPGAs) simply by ensuring

that the communications are correctly handled. All PHANTOM tools operate at the

component level.

Instead of traditional testing methods in which test cases are manually developed,

Model Based Testing (MBT) automatically generates test cases from MBT models. The

test generation process follows user specified strategies, and this guarantees a

systematic testing coverage to explore and test application behaviors when executing

the test cases. In PHANTOM, besides the requirements to improve testing efficiency

and effectiveness, one particular testing requirement is to enable programmers to test

very early in the development life cycle. Following this, MBT in PHANTOM provides

two early validation activities (i.e., model validation and performance estimation) in the

design phase to test applications based on specification documents without executing

binaries. Moreover, the PHANTOM MBT approach builds upon the abstractions

brought by the PHANTOM Programming Model to focus on global functional and non-

functional properties of the system, so early validation and test execution activities are

designed and implemented for both functional and non-functional testing.

The Monitoring Library abstracts the collection of non-functional and user-defined

metrics, automating the collection of optimisation data. The library allows the selection

of the metrics to be collected at the system and application levels, as well the

configuration of the sampling frequency. This mechanism is missing from existing

commodity tools. The MF-Library was integrated with the MF-Server under task 2.2

"Unified runtime monitoring implementation". However, we consider that MF-Library

API, targeting to enable the collection of metrics at application level in a user-defined

manner, has to be described in D3.2 because is there where are described the

PHANTOM APIs ("Programming interfaces (APIs) per application class" task 3.2).

This allows having all the tools used for the instrumentation of the applications in one

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 2 Version 1.0 4 September 2018

Confidentiality: Public Distribution

place, as well as helps to provide a clearer view on the purpose and future use of the

MF-Library API.

The components in this deliverable, together with the components defined in WP2 and

WP4, constitute the next generation heterogeneous, parallel and low-power computing

systems in PHANTOM.

1.2 SCOPE

This document reports the development of all tasks executed in the context of WP3 –

“Programmer- and productivity- oriented software tools”. Figure 1-1 shows a

representation of the PHANTOM architecture. Highlighted in red are the components

developed within the context of WP3 activities. These components are Parallelization

Toolset, Programming Interface, Model Based Testing and PHANTOM Monitoring

Library.

Figure 1-1: Components of the PHANTOM architecture addressed in WP3

1.3 AMBITIONS AND MAJOR INNOVATIONS

The Parallelization Toolset provides a first stage of translation for the application,

meaning that it transforms the application so that a greater exploitation of the available

hardware resources is achieved. It is also responsible for applying the necessary

modifications that are going to enable the application‟s deployment on different

hardware devices like FPGAs or GPUs. In this way, new levels of code parallelization

can be reached that will be able to overcome results from state-of-the-art techniques

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 3

Confidentiality: Public Distribution

applied on homogeneous platforms. This is important since popular techniques on

SMPs like pthreads or OpenMP can be gracefully combined with NUMA architectures,

as well as execution on external acceleration devices.

The Programming Interface is an enabling technology designed to provide the

communication and synchronization between the application components. The provided

APIs can be used regardless of the background architecture that has been chosen

(POSIX, MPI, …) without any user interaction providing to the final product an

optimized execution environment.

MBT in PHANTOM advances the MBT technologies with the following innovations.

 MBT in PHANTOM enables early validation to check the functional and non-

functional characteristics of a design in parallel with application development.

 MBT further improves testing efficiency and effectiveness with fine grained and

adapted MBT components. Separate models are developed in the early validation

and test execution phase to capture different testing focuses. MBT models are

created based on the extension of state machine diagrams to consider parallel

features of PHANTOM applications. The test cases are generated with systematic

criteria to provide effective coverage and execution.

 MBT has been extended to test applications in parallel and embedded environments,

while adaptive solution has been developed to efficiently test component-based

applications. Based on the MBT achievements in PHANTOM, we have applied for

an innovation patent.

The following three major innovations are identified for the Monitoring Library.

 It frees the end users from providing a hardware description or monitoring

configuration on heterogeneous systems.

 It can monitor user-defined metrics for application-level monitoring without the

need of additional monitoring tools, and offers a light-weight, hardware-agnostic

API for injecting the instrumentation into the application code.

 It has highly customizable monitoring settings. The users can specify the metrics for

collection, and can modify parameters like the sampling and the flush time intervals

independently for each application and metric, which is not the case for the other,

alternative approaches. The tool even allows to modify the monitoring configuration

during the execution of the application.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 4 Version 1.0 4 September 2018

Confidentiality: Public Distribution

2. PARALLELIZATION TOOLSET

2.1 USE CASE REQUIREMENTS

2.1.1 Initial Set of Requirements

Appendix 1 contains a per-requirement breakdown of the functionality of the

Parallelization Toolset. In summary, all requirements we met, apart from U38 which

was eliminated based on end user feedback.

2.1.2 Preliminary use case feedback from M18 results

The PT Code Analysis takes sequential code and transforms it in order to enable loop

and task parallelization. The first version of the tool was able to identify all existing

loops inside a portion of a components‟ source code and to parallelize some of the non-

complex ones. PT Technique Selection was then used to select the adequate paralleliza-

tion technique. This has provided important automation of parallelization tasks that

would otherwise have to be done manually.

GMV was already able to apply it to achieve a small improvement of the execution time

through parallelization of the source code; however, it was detected that the tool was

only targeting a small portion of the code, so a larger improvement was expected from

later versions. The Code Analysis functionality has had some major improvements

compared to the preliminary results from M18 (as shown in section 2.3.5).

2.2 DESIGN SPECIFICATIONS

The tool flow of the Parallelization Toolset consists of two main components: Code

Analysis and Technique Selection. The former runs an analysis to the components‟ code

to identify the parallelizable regions in it and produce modified versions that can run on

different parts of the available hardware (CPUs, GPUs, FPGAs). The latter takes up to

choose the corresponding versions based on the MOM‟s decision and upload them on

the Repository to be used by the Deployment Manager for the execution of the applica-

tion. Their architecture and their interaction with the other PHANTOM components are

described below.

2.2.1 Code Analysis

In general, Code Analysis is responsible for the first analysis of the components‟ code

and the production of their modified versions that are described as:

 OpenMP version: Includes OpenMP annotations that indicate the usage of multiple

threads for the component‟s execution in CPU platforms.

 CUDA version: A version including the CUDA API that communicates with the

kernel of the GPU (the code that runs on the device) to enable GPU acceleration.

This version is generated only when specified in the component network in terms of

feasibility (optimality is decided by MOM).

 FPGA version: A version of the component specifically designed to enable

execution on an FPGA device. This version is generated only when specified in the

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 5

Confidentiality: Public Distribution

component network in terms of feasibility and its generation is part of the Technique

Selection module by using a specific tool entitled as IP Core Generator (as described

below).

The generation of these versions of the components will give the ability to PHANTOM

to exploit the available hardware platform and accelerate the application‟s functionality.

The flow of the tool is described in the steps below.

2.2.1.1 Component Network Analysis

The main activity of the tool is the automatic parallelization of the components and the

libraries that are defined by the user. For the implementation of that interaction with the

user, the tool gets input from the component network XML file which is downloaded

from its location on the Repository, containing all the necessary information about the

components (e.g. name, source file, external libraries used etc.) and stores that

information using a set of classes designed to model the different components and the

data transfers between them.

2.2.1.2 Automatic parallelization

After extracting the necessary information from the XML file, the tool can proceed with

the parallelization of the code. For this purpose, another interaction with the Repository

is required for downloading the project source files. Finally, the actual analysis of the

code is invoked for all the components and the external libraries (only the ones that are

defined in the Component Network) that are used, as described in the following steps.

Pre-processing with the Programming Model

Characteristics of the PHANTOM programming model assist the code analysis stage. In

specific, the component isolation of the model means that there are data dependencies

discovered during the analysis that don‟t affect the potential concurrency. For this rea-

son, specific annotations (described in D1.3) of the programming model are used to ex-

tend the tool‟s “understanding” of the data flow and resolve many of those dependen-

cies. For instance, the annotation #pragma phantom static-vectors is used to character-

ize a vector of static size, resolving in that way lots of the dependencies that occur due

to the variable size of the vector.

In order to exploit these indications, a big part of the PT‟s Code Analysis functionality

concerns the pre-processing of the code, aiming to resolve a lot of its existing depend-

ences. The tool uses this interaction with the user to resolve some of the difficulties that

the latest techniques in automatic parallelization have yet to resolve.

OpenMP Parallelization

Code Analysis identifies parallelizable regions in the code and produces a parallelized

version, containing OpenMP annotations that allow the use of multiple threads during

the execution of the component on a multicore CPU system. The generated parallelized

versions are uploaded on the Repository.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 6 Version 1.0 4 September 2018

Confidentiality: Public Distribution

CUDA API for deployment on GPU devices

As with the OpenMP version, Code Analysis identifies parallelizable regions in the

code and produces modified versions, using CUDA functions to transfer data in and out

of the device and invoke the kernel functions to execute the necessary calculations de-

fined by the user. The new versions are uploaded on the Repository. For FPGAs, the

Technique Selection is taking care of the IP Cores generation (through the IP Core Gen-

erator tool).

Component Network Update

According to the above results, Code Analysis updates the Component Network XML

file by including parallelization directives for each component (ability to be parallel-

ized, possible number of independent loop slices etc.).

Repository Updates and Application Manager Notification

After the analysis is completed, the updated Component Network XML file and the up-

dated versions of the components are uploaded to the Repository. Finally, a notification

is sent to the Application Manager, so that the MOM is informed that the analysis stage

is over and that the updated version of the Component Network can be obtained by the

Repository.

2.2.2 Technique Selection

CPU and GPU Parallelization

Now that components have been annotated with their potential parallelism, Technique

Selection actually selects which to use. A Deployment Plan is produced by the MOM

which determines which version of each component to deploy according to the hard-

ware resources assigned to each component using a straight forward decision mecha-

nism.

In particular, for the case that the component runs on a CPU the OpenMP version is

used, enabling the possibility of running the component in parallel using multiple

threads. On the other hand, if the MOM decides to use a GPU or an FPGA to accelerate

the component‟s execution the CUDA version is chosen for the GPU case or the selec-

tion procedure is assigned to the IP Core Generator which is responsible for the FPGA

version of the components.

IP Core Generator

The IP Core Generator allows the automatic creation of FPGA IP Cores for accelerating

components. The procedure of the IP Core Generator can be summarised in the follow-

ing steps:

Step 1. The IP Core Generator receives a notification about new deployment plans pre-

viously validated by the Offline MOM;

Step 2. Checks if there are components, in the deployment plans, to be deployed for

FPGA architecture;

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 7

Confidentiality: Public Distribution

Step 3. Downloads the source files, for those components, from the Repository;

Step 4. Transforms the source code, using LLVM and Clang compiler and toolchain

technologies, to expose the IP Core interfaces that are required for generating an IP core

using Vivado HLS toolkit;

Step 5. The IP Core Generator will invoke Vivado HLS tools to analyse the transformed

source code and to create the hardware descriptive files (HDL files) of the IP Core;

Step 6. When Vivado HLS finishes, the IP core files are compressed into a zip file and

uploaded back into the Repository to be used by the other PHANTOM Platform com-

ponents.

2.2.3 Background Tools

ROSE Compiler

The Parallelization Toolset uses the ROSE Compiler [1] during its code analysis on

each component or external library that is defined by the user. ROSE is an open source

compiler infrastructure to build source-to-source program transformation and analysis

tools for large-scale applications. In specific, the PT employs the autoPar tool [2]

which is an implementation of automatic parallelization using OpenMP and can auto-

matically insert OpenMP 3.0 directives into input serial C/C++ code.

LLVM and Clang compiler

The IP Core Generator uses the LLVM suite [3] and the Clang compiler [4] to parse

and analyse the code identified to be implemented in hardware. These tools are used to

define and execute the transformation rules required to transform the component code

into code accepted by the Xilinx Vivado HLS.

Xilinx Vivado High-Level Synthesis

The Xilinx Vivado High-Level Synthesis (HLS) [5] is a tool used to generate hardware

designs based on C, C++ or System C specifications. The IP Core Generator uses this

tool to automatically generate the hardware designs equivalent to functions in a

PHANTOM component, selected to be deployed on an FPGA hardware. The IP Core

Generator must transform the code of a PHANTOM component, adapting the code and

introducing low-level descriptions to enable Vivado HLS the generation of the IP Cores.

2.3 IMPLEMENTATION DETAILS

The above design is implemented with the flow that is described, using the individual

tools to complete its functionality.

2.3.1 Code Analysis

Code Analysis is implemented in Java. The input of the Code Analysis is downloaded

from the Repository and consists of the Component network XML document and the

specified components‟ source code (currently C/C++). The analysis is an iterative pro-

cess that analyses the components and any external libraries that are used, one by one.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 8 Version 1.0 4 September 2018

Confidentiality: Public Distribution

A big part of the analysis concerns the pre-processing of the code according to user an-

notations as they are defined by the Programming Model in D1.3. In specific:

#pragma function no-side-effects

This pragma declares that a function can be considered as side-effect-free, meaning that

it doesn‟t write in memory addresses outside its range. That enables the PT to ignore

any dependencies originating from any calls to this function.

#pragma loop no-pointer-aliasing

This pragma can be used to declare that any pointer/array accesses in the following loop

will not overlap with each other. This information is used to eliminate dependencies that

occur because of indirect array accesses using values that are defined at run-time.

#pragma loop static-vectors

This pragma can be used to declare that any vector-class objects that exist in the loop

retain their size during all iterations avoiding in this way dependences caused by ac-

cesses to unallocated memory addresses. Using this information, the PT considers any

vectors appearing in the analyzed loop as static C arrays. This indication was found to

be the most useful since the vector class is used a lot in the use cases.

After pre-processing the component, the PHANTOM Parallelization Toolset applies

some of the latest compilation techniques [6] to model the source code. An extended di-

rection matrix (EDM) dependence representation is used to cover non-common loop

nests that surround only one of the two statements in order to handle non-perfectly nest-

ed loops. For array accesses within loops, a Gaussian elimination algorithm is used to

solve a set of linear integer equations of loop induction variables. Introducing such

models assists the localization of otherwise untraceable major parallelization capabili-

ties.

The stages included in the analysis [1] are the following:

 Apply optional custom transformations based on input code semantics, such as con-

verting tree traversals to loop iterations on memory pools.

 Normalize loops, including those using iterators.

 Find candidate array computation loops with canonical forms (for omp for) or

loops and functions operating on individual elements (for omp task).

 For each candidate:

o Skip the target if there are function calls without known semantics or side ef-

fects.

o Call dependence analysis and liveness analysis.

o Classify OpenMP variables (autoscoping), recognize references to the current el-

ement, and find order-independent write accesses.

o Eliminate dependencies associated with autoscoped variables, those involving

only the current elements, and output dependencies caused by order-independent

write accesses.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 9

Confidentiality: Public Distribution

o Insert the corresponding OpenMP constructs if no dependencies remain.

o Store the new parallelized OpenMP version locally

Finally, the pre-processing of the code is reversed and the new version is uploaded on

the Repository.

2.3.2 CUDA API for deployment on GPU devices

As already mentioned, the GPU API that is described in D3.1 is used to produce the

GPU versions of the components. In specific, the PT generates the CUDA API that is

required for the deployment on the GPU device. The necessary inputs and outputs are

exchanged between CPU and GPU and the initiation of the kernel is coordinated by the

corresponding functions. An example of the API‟s exploitation is displayed below:

int *vec_add(int *a, int *b) {

 int c[l0000];

 #pragma phantom kernel vec_add_CUDA kernelin a type=int

size=l0000

#pragma phantom kernel vec_add_CUDA kernelin b type=int

size=l0000

 for(int i=0; i<10000; i++)

 c[i] = a[i] + b[i];

#pragma phantom kernel vec_add_CUDA kernelout c type=int

size=l0000

return c;

}

Here, the use of the GPU API is visible, defining the arrays a and b as inputs and the

array c as output for the kernel function vec_add_CUDA(). The results of the analy-

sis and the generation of the GPU version of the component is displayed below:

//GPU usable

int *vec_add(int *a, int *b) {

int c[10000];

 //Declare pointers for the GPU to use

int *dev_a, *dev_b, *dev_c;

 //Allocate memory on the GPU

 cudaMalloc((void**)&dev_a, 10000*sizeof(int));

 cudaMalloc((void**)&dev_b, l0000*sizeof(int));

cudaMalloc((void**)&dev_c, 10000*sizeof(int));

 //Copy the arrays a and b to the GPU

 cudaMemcpy(dev_a, a, 10000*sizeof(int), cudaMemcpyHostToDevice

);

cudaMemcpy(dev_b, b, 10000*sizeof(int),

cudaMemcpyHostToDevice);

 //Launch the kernel with 100/128 thread blocks of 128 threads

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 10 Version 1.0 4 September 2018

Confidentiality: Public Distribution

 dim3 block(l28);

 dim3 grid((l0000+ 127)/128);

vec_add_CUDA<<<grid, block>>>(dev_a, dev_b, dev_c, 10000);

 //Copy the array c back from the GPU to the CPU

cudaMemcpy(c, dev_c, 10000*sizeof(int), cudaMemcpyDeviceTo-

Host);

 //Free the memory allocated on the GPU

 cudaFree(dev_a);

 cudaFree(dev_b);

 cudaFree(dev_c);

return c;

}

2.3.3 Technique Selection

As already mentioned, Technique Selection selects the suitable versions of the

components for the deployment according to the Deployment Plan produced by the

MOM. The process of this selection concerns the translation of the deployment plan

from a lower-level hardware representation to a higher-level software representation of

the components. In this way, the final version of the application is uploaded to the

Repository and is ready to be refined and deployed by the Deployment Manager.

public void TechSel {

 boolean gpu_flag=false, fpga_flag=false;

 for(int i=0; i<Components.size(); i++) {

 if(Components.get(i).getLoops().size() == 0) {

 Components.get(i).setFinalVersion(“OpenMP”);

 continue;

 }

 else {

 for(int j=0; j<Components.get(i).getLoops().size(); j++)

{

 if(Components.get(i).getLoops().get(j).RunsOnGpu())

{

 gpu_flag = true;

 }

 else if(Compo-

nents.get(i).getLoops().get(j).RunsOnFpga) {

 fpga_flag = true;

 }

 }

 }

 if(gpu_flag && !fpga_flag) {

 Components.get(i).setFinalVersion(“CUDA”);

 }

 else if(!gpu_flag && fpga_flag) {

 Components.get(i).setFinalVersion(“VHDL”);

 }

 }

}

2.3.4 IP Core Generator

In some situations, the developer may want to test the performance of executing specific

code on FPGA platforms. However, as he/she may lack the expertise on how to

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 11

Confidentiality: Public Distribution

implement hardware designs, she may request the PHANTOM framework to

automatically generate the corresponding designs.

To force the invocation of the IP Core Generator, the developer must specify, with the

pragma below, which part of the component‟s code to that the developer would like to

be transformed and deployed on the hardware of a FPGA platform by indicating the top

function to be parallelised.

#pragma function generate-ipcore <TOP_FUNCTION_NAME>

This pragma indicates the interest of the developer in test performance of a hardware

implementation of this code and, at the same time, provides the indication to the

PHANTOM framework that this code respects the conditions for the code

transformation. The developer must also ensure that the selected function does not use

software constructs that Vivado HLS cannot support. Vivado HLS is one of the

industry-leading high-level synthesis solutions, but it cannot translate everything.

Though source code with variable dependencies can still generate a functional IP Core,

static loop bounds and similar will generate more efficient hardware.

2.3.5 Preliminary testing results

The Code Analysis functionality has had some major improvements compared to the

preliminary results from M18. In specific, the PT was able to analyze the component

network reinforced with information about the external libraries that are used in the

code to enlarge its focus on the parts that have the largest effect and extract revealing

results.

The Surveillance use case was tested as shown in Figure 2-1 producing the following

observations:

 The main components (which do not include the external libraries Mat and Vec)

are not able to be parallelized since they are strongly characterized by their big size

and complexity.

 Lots of the loops inside the Mat and Vec libraries that were successfully parallel-

ized verify the tool‟s efficacy and expansion of those results after further integration

with the use cases. In specific, we can see a very promising efficiency of 40% of

parallelized loops allowing many multithreading capabilities during the applica-

tion‟s execution. Functions in the specified libraries are continuously invoked by the

main components, hence their parallelization is massively optimizing the overall

performance.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 12 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Figure 2-1 Parallelization Toolset results

2.4 INTEGRATION ASPECTS

The Parallelization Toolset communicates with the other PHANTOM tools through the

Repository and the Application Manager. The Repository stores all the files of every

project, original or modified. The PT downloads the component network, component

source code, and the deployment plan from the Repository, and uploads modified ver-

sions of the components and the component network.

The Application Manager implements the sending and receiving of notifications be-

tween PHANTOM tools. For example, a notification gets sent when a modified version

of the Component Network is uploaded on the Repository, because the MOM is waiting

for it to initiate its execution. Accordingly, the PT (Technique Selection) is polling,

waiting for a notification from the MOM to inform the Application Manager that the

Deployment Plan is uploaded and ready for the PT to use.

2.5 INNOVATIONS BEYOND THE STATE-OF-THE-ART

2.5.1 Summary of new technologies/extensions developed

2.5.1.1 XML Parsing and Modelling Classes

During the development of code analysis, the design of a set of classes and functions

implemented in Java was found necessary, to parse and modify XML documents using

appropriate libraries. These libraries are mainly required to process the Component

Network that provides all necessary information about the components and the

Deployment Plan that provides information about the deployment. All information

extracted from these documents are modelled inside the tool providing a usable model

that is currently able to guide the analysis of the components and the technique selection

as well. These models are used to describe the Component Network and the

Deployment Plan and can be used by any tools that require their usage (e.g. Deployment

Manager).

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 13

Confidentiality: Public Distribution

2.5.1.2 Use of the PHANTOM Programming Model

The adoption of the PHANTOM programming model (concerning dependences as

described in D1.3) faces some of the issues that the latest technologies in the science of

automatic parallelization have yet to resolve. It enables the user to interact with the tool

optimizing the results produced by their joint effort with the tool. This approach aims to

ensure that the best techniques have been inspected with regard to the parallelization ef-

ficiency provided by the PHANTOM framework.

2.5.1.3 Integration and extension of external developing tools

The integration of ROSE with the PT has fitted well on the final structure of the tool

resulting in the adoption of the latest technologies available, while also satisfying the

constraints regarding the use case requirements. With support from the programming

model, the PT is able to extend the functionality of the autoPar tool, eliminating lots of

dependences that make real-world applications difficult to parallelize, while still using

advanced mathematical models to conduct the code analysis.

In addition, the functionality of the PT tool flow is extended with the support of GPU-

based or FPGA-based components resulting in a full-platform support, unlocking

multiple parallelization capabilities. Deployment on multiple devices can be achieved

while minimum user intervention is required, hence creating a tool that can guarantee

full code coverage for multiple-type applications.

2.5.1.4 IP Core Generator

High-level Synthesis tools exist, but they still require a large amount of expert

knowledge to integrate into an FPGA design. The componentisation of the PHANTOM

programming model allows the IP Core Generator to automate the creation of IP cores

in a much more automated way than is normally possible. Combined with the other

PHANTOM tools which automatically combine IP cores into a fully supported design,

this tool provides PHANTOM with the capability to fully automatically produce FPGA

deployable artefacts without requiring any significative effort from the developer.

2.5.2 Full Prototypes functionality

The Parallelization Toolset, on its latest stage, is able to produce modified versions of

the components supporting OpenMP for parallelization on a multicore CPU system as

well as versions for deployment on GPUs and FPGAs. The tool is fully integrated with

the PHANTOM Servers such as the Repository Server and the Application Manager

Server. Being fully connected with those two components, the PT is able to cover all its

integration needs with other PHANTOM components, allowing it to run when required,

fetch the data it needs, and update the Repository with the generated results.

The PT adopts the functionality of the ROSE Compiler to perform deep analysis tests,

identifying data dependencies in the components and producing their parallelized

OpenMP versions. GPU versions are created as well, as products of the analysis with

help from the GPU API that guides the transformation of the components.

Technique Selection uses the Deployment Plan provided by the MOM to choose be-

tween the different versions created to guarantee the deployment that the deep analysis

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 14 Version 1.0 4 September 2018

Confidentiality: Public Distribution

conducted by the MOM is efficiently followed. The selection is guided by the Deploy-

ment Plan, producing a higher-level (software) representation of the final deployment,

instead of the lower-level (hardware) one described by the MOM.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 15

Confidentiality: Public Distribution

3. PROGRAMMING INTERFACE

For the required communication between the components, a set of APIs is provided by

the PHANTOM framework (as described in deliverables D1.2, D1.3, D3.1) to enable

the user to initiate and coordinate the data exchanges. In the case that the user would

like to include execution of a GPU kernel for the acceleration of a component, a suitable

GPU API is provided as well (as described in D3.1), to allow the user to coordinate the

data transfers to and from the device and to initiate the deployment on it. The

Programming Interface is defined as the implementation of the programming model

communication protocols defined in D1.2, D1.3. The aforementioned APIs of the

Programming Interface are described in detail in later paragraphs.

3.1 USE CASE REQUIREMENTS

3.1.1 Initial Set of Requirements

All preliminary use case requirements are met by the Programming Model. For a full

breakdown, see Appendix 2.

3.1.2 Preliminary use case feedback from M18 results

The adoption of the PHANTOM programming model by the Telecom Use Case, with

its multi-program paradigm, resulted in a cleaner partitioning and isolation of the

modular and parallelizable components, thus in more structured and reusable code.

The Shared protocol model was adopted in the Telecom Use Case, by allowing a formal

definition of the interaction mechanism between components and orientating the system

design to a more secure communication approach. The model is completed by the

formal description of its organization by means of the required platform description,

component network, and the initial deployment plan.

3.2 DESIGN SPECIFICATIONS

3.2.1 Data Transfer Support

The PHANTOM Programming Interface provides an API to transfer data according to

the needs of the application. Thus, all possible efforts have been made in order to extend

the support of the data that can be moved among the different components.

Automatic Support: Primitive data types are all automatically supported by the Pro-

gramming Interface. This includes the types:

 char

 short

 int

 long

 float

 double

and all qualified versions of the above (signed, unsigned, long, and long

long, and those declared const).

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 16 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Extended Support:

The Programming Interface also supports:

 Structs and unions of the above types

 Arrays of the above types (including supported structs and unions) that are declared

with a compile-time static size. This includes multidimensional arrays, where all

dimensions have a compile-time static size.

 Variable-length arrays of the above types, since their size can be manipulated by the

sizeof() operator at compile-time.

 Class instances of the above

 References to the above

Precisely, an array with a compile-time static size are arrays where sizeof() can re-

solve to a value at compile-time without having to generate run-time code.

For the use of primitives, users are encouraged to use types included in the stdint.h

library, because of their constant size among different architectures (as discussed in

D1.2). In a different case, the Deployment Manager will take up to resolve type incon-

sistencies before the deployment (details in D4.4).

Pointer types are not automatically supported because they are not meaningful when

transferred to another memory space. This restriction also applies to structs with pointer

fields.

The same stands for C++ vectors and other structures whose size is variable and cannot

be known at compile-time.

Handling Unsupported Situations: Cases where the data that needs to be transferred

follows a more complex structure than the ones mentioned above, can also be easily

handled by the user by including serialization of the data into a static structure (array)

before the transfer like shown in the example below.

struct X *data_out; // Unsupported data type

int component_A() {

initialize(data_out);

#pragma phantom queue out object_out

char object_out[100]; // Supported data type

serialize_X(data_out,object_out);

phantom_queue_put(object_out);

return 0;

}

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 17

Confidentiality: Public Distribution

struct X *data_in; // Unsupported data type

int component_B() {

#pragma phantom queue out object_in

char object_in[100]; // Supported data type

phantom_queue_get(object_in);

deserialize_X(object_in,data_in);

return 0;

}

In general, the Programming Interface provides to the user a wide support for all kinds

of transfers. Attention should be paid to the limitations (described above) coming from

the address space switching when moving objects among different parts of the hardware

architecture.

3.2.2 Shared Protocol

The shared API consists of functions for manipulating data stored in the shared

memory. As described in D1.2 PHANTOM provides the user with the ability to declare

a variable as shared via the appropriate phantom directive (i.e. #pragma phantom

shared etc.). Since PHANTOM does not provide automatic consistency, the

developer must call synchronization functions in order to update the shared variable in

its latter status. For this purpose, PHANTOM provides the following function:

bool phantom_synchronize(void *item, int dir) (1)

which causes the local view of the item to be updated according to the corresponding

data on the shared memory if the dir variable has the value 0. On the opposite case, the

shared memory is updated according to the local view of the item.

Furthermore, in case a component, along with its shared data, is parallelized in slices by

the Multi-Objective Mapper, PHANTOM provides the following function:

size_t phantom_slice_size(void *item) (2)

able to return the size (in elements) of the slice allocated to this component. This func-

tion, when combined with the appropriate offset, can provide the data processing (e.g.

iteration) only between the targeted offset and the returned slice size.

3.2.3 Queue Protocol

The Queue API offers the appropriate facilities that enable the user to manage the

communication between components that are mainly mapped to distributed memories

and are linked with specific communication objects in the form of queues. Specifically,

these queues have the form of blocking FIFOs of arbitrary size (see D1.2). The

functions of the Queue API provide the user with the ability to send or receive elements

and to count the number or size of the elements which are in the queue. The Queue API

functions addressed in the current stage are the following:

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 18 Version 1.0 4 September 2018

Confidentiality: Public Distribution

bool phantom_queue_get(void *item) (3)

bool phantom_queue_put(void *item) (4)

bool phantom_queue_peek(void *item) (5)

uint32_t phantom_queue_count(void *queue) (6)

3.2.4 Signal Protocol

Apart from sharing and interchanging elements, PHANTOM includes the Signal API

which provides the user with signalling facilities, enabling the coordinated execution of

components and sections inside each component, without sending or receiving queues

or shared data. These Signal API functions also complement the functions of the Shared

and Queue API since they also need signalling to synchronize their execution, between

components. PHANTOM provides functions able to block and wait for specific signal,

which are unblocked by appropriate notify functions, as described in D1.2:

bool phantom_wait(void *signal) (7)

Blocks the current thread/process until the signal in question is notified.

bool phantom_notify(void *signal) (8)

Unblock a random single thread/process waiting on the signal.

bool phantom_notifyall(void *signal) (9)

Unblock all threads/processes waiting on the signal. In addition, PHANTOM provides a

barrier function able to wait until all threads or processes, before that call have finished

their work:

bool phantom_barrier(int component_id) (10)

3.2.5 Mutex Protocol

Mutexes are used to enforce mutual exclusion between a set of components on a critical

region where shared data is used. They are enforced at the component level and are

unrelated to OS-level mutexes from other APIs, but their usage is similar to the one

described in the POSIX standards. Applies to pointer and array types. The API

functions that enable mutex usage are described below:

bool phantom_mutex_lock(void *mutex) (11)

Block until the current mutex can be owned by the requesting component.

bool phantom_mutex_unlock(void *mutex) (12)

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 19

Confidentiality: Public Distribution

Release the current mutex, if it is currently owned. Any components waiting on

phantom_mutex_lock can then recontest for the mutex. If multiple components are

blocked then a random one is awarded the lock.

bool phantom_mutex_trylock(void *mutex) (13)

Attempt to lock the mutex, but do not block if the attempt was unsuccessful. Returns

true if the mutex was locked and false if not.

3.2.6 Repository File Access API

Feedback from user partners suggested that the PHANTOM Repository could be a

useful resource for storing input and output data for the components of the application.

In order to optimize the file access and minimize the communication cost created by it,

data items are placed in the necessary locations throughout the deployment architecture.

For example, large data items are placed „near‟ the components that use them.

Therefore, if components are able to read and write from the same memory that they are

executed on, deployment over heterogeneous distributed architectures is optimized. This

is achieved by extending the PHANTOM Programming Interface with file operations.

The added functions are mirrors of the POSIX file operations in order to maximise

compatibility. The stream objects returned by PHANTOM Programming Interface

functions are compatible with the other I/O functions from the C standard library,

fprintf, fscanf, snprintf, sprintf, and sscanf.

FILE * phantom_fopen (const char * filename, const char *

mode) (14)

Opens the file whose name is specified in the parameter filename and associates it with

a stream that can be identified in future operations by the FILE pointer returned.

int phantom_fclose (FILE * stream) (15)

Closes the file associated with the stream and disassociates it. All internal buffers

associated with the stream are disassociated from it and flushed: the content of any

unwritten output buffer is written and the content of any unread input buffer is

discarded. Even if the call fails, the stream passed as parameter will no longer be

associated with the file nor its buffers.

int phantom_fflush (FILE * stream) (16)

If the given stream was open for writing any unwritten data in its output buffer is

written to the file. The stream remains open.

size_t phantom_fwrite (const void * ptr,size_t size,size_t

count,FILE * stream) (17)

Writes an array of count elements, each one with a size of size bytes, from the block of

memory pointed by ptr to the current position in the stream. The total number of

elements successfully written is returned. Sets ferror if an error occurred.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 20 Version 1.0 4 September 2018

Confidentiality: Public Distribution

size_t phantom_fread (void * ptr, size_t size, size_t

count, FILE * stream) (18)

Reads an array of count elements, each one with a size of size bytes, from the stream

and stores them in the block of memory specified by ptr.

int phantom_fgetpos (FILE * stream, fpos_t * pos) (19)

Retrieves the current position in the stream.

int phantom_fseek (FILE * stream, long int offset, int

origin) (20)

Sets the position indicator associated with the stream to a new position. If the stream is

binary, the new position is offset + origin. If the stream is text, then offset shall be 0.

Returns zero on success or a platform-specific error number.

3.3 IMPLEMENTATION DETAILS

Depending on the type of physical memory that is required for the communication, the

protocol uses different libraries as described below.

In the case that all the components that interact with the communication object are

executed on a single shared memory system, the specific components are going to be

executed as different threads sharing the same memory space. To achieve that,

PHANTOM uses pthreads along with other POSIX functionalities (like mutexes and

condition variables) to keep the communication cost low as well as the memory

footprint.

In the case that the components that interact with the object run on different nodes,

meaning a distributed memory system, a Message Passing technique is required. For

this reason the OpenMPI library was chosen due to its efficiency and simplicity on

different kinds of real world applications. In specific, the execution of different

components will be implemented as different MPI processes and the communication

between them will exploit a lot of the already existing OpenMPI interface functions that

are available.

In the following paragraphs, a description of the protocols implementation‟ is attached

along with some of the key functions of the protocols, in order to display a good view of

the Interface‟s functionality. More details about the implementation will be provided in

D4.4, due to the major dependence of the Programming Interface on the Deployment

Manager.

3.3.1 Shared Protocol

The Shared Protocol is implemented by keeping an area in the available memory as a

shared segment between the different components.

if(dir == 0) {

 pthread_mutex_lock(&obj->lock);

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 21

Confidentiality: Public Distribution

When executing on different nodes, the functions MPI_Win_allocate_shared() and

MPI_Win_shared_query() are used to create a virtually shared area in the processes‟

shared address space, presenting to the user the image of a shared memory system.

Below, the creation of such an environment is displayed, along with the implementation

of the the phantom_synchronize() API. The generation of the displayed main function is

part of the Deployment Manager‟s functionality and will be fully discussed in D4.4.

Here, the allocation of the required shared memory segment is presented, as well as the

necessary function to update the local memory with the shared version of the data (or

vice versa).

int main(int argc, char** argv)

{

 printf("Initializing...\n");

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 MPI_Comm_group(MPI_COMM_WORLD,&world_group);

 MPI_Group_incl(world_group, 2, shared_ranks0, &shared_group0);

 MPI_Comm_create(MPI_COMM_WORLD, shared_group0, &shared_comm0);

 shared_size0 = -1;

 shared_rank0 = -1;

 if(shared_comm0 != MPI_COMM_NULL) {

 MPI_Comm_size(shared_comm0, &shared_size0);

 MPI_Comm_rank(shared_comm0, &shared_rank0);

// Creation of shared memory window

 MPI_Win_allocate_shared(2*5*sizeof(float), sizeof(float),

MPI_INFO_NULL, shared_comm0, &local_var0, &shared_win0);

}

 printf("Finalizing...\n");

 MPI_Comm_free(&shared_comm0);

 MPI_Group_free(&shared_group0);

 MPI_Group_free(&world_group);

 MPI_Finalize();

}

void synchronize(MPI_Win shared_win, MPI_Aint* winsize, int*

windisp, void* shared_var)

{

 MPI_Win_shared_query(shared_win, 0, winsize, windisp,

shared_var);

}

 memcpy(local_data,shared_data,dims[0]*data_size);

 pthread_mutex_unlock(&obj->lock);

}

else if(dir == 1) {

 pthread_mutex_lock(&obj->lock);

 memcpy(shared_data,local_data,dims[0]*data_size);

 pthread_mutex_unlock(&obj->lock);

}

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 22 Version 1.0 4 September 2018

Confidentiality: Public Distribution

3.3.2 Queue Protocol

The Queue Protocol uses a shared memory area as well to keep the data of the queue. In

addition, a common pointer variable is used to access the queue and manipulate its data.

void phantom_queue_get(phantom_queue *queue, void* it, int data_size)

{

 while(queue->count == 0);

 pthread_mutex_lock(&queue->lock);

 phantomQnode *tmp = queue->front;

 queue->front = queue->front->next;

 if(queue->front == NULL)

 queue->rear = NULL;

 queue->count--;

 memcpy(it,tmp->item,data_size);

 pthread_mutex_unlock(&queue->lock);

 free(tmp);

}

bool phantom_queue_put(phantom_queue *queue, void* it) {

 phantomQnode *new_node = generate_phantom_Qnode(it);

 pthread_mutex_lock(&queue->lock);

 if(queue->rear == NULL) {

 queue->front = queue->rear = new_node;

 }

 else {

 queue->rear->next = new_node;

 queue->rear = new_node;

 }

 queue->count++;

 pthread_mutex_unlock(&queue->lock);

 return true;

}

In order to translate the same functionality to a distributed memory system, the imple-

mentation uses the same logic as the shared protocol along with the MPI_Send(),

MPI_Recv() functions to send and receive data.

3.3.3 Signal Protocol

The Signal Protocol uses POSIX conditional variables to transfer signals between

components.

void phantom_notify(phantom_signal *curSignal, bool *rd, int phan-

tom_src) {

 pthread_mutex_lock(&curSignal->lock);

 curSignal->ready = *rd;

 if(curSignal->ready == true) {

 if(pthread_cond_signal(&curSignal->cond) != 0) {

 fprintf(stderr,"Failed to send signal\n");

 exit(0);

 }

 }

 else {

 perror("Signal called with value 0");

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 23

Confidentiality: Public Distribution

 exit(1);

 }

 pthread_mutex_unlock(&curSignal->lock);

}

void phantom_wait(phantom_signal *curSignal, bool *rd, int phan-

tom_cmpid) {

 pthread_mutex_lock(&curSignal->lock);

 while(curSignal->ready == 0) {

 if(pthread_cond_wait(&curSignal->cond,&curSignal->lock) != 0) {

 fprintf(stderr, "failed to wait the condition variable\n");

 exit(0);

 }

 else {

 curSignal->ready = 1;

 *rd = true;

 }

 }

 pthread_mutex_unlock(&curSignal->lock);

}

When executing on different nodes the MPI_Send(), MPI_Recv(), MPI_Bcast() func-

tions are used for signalling and MPI_Barrier() for the phantom_barrier() PHANTOM

function.

void phantom_notify(int *rd, int dst) {

 MPI_Send(rd, 1, MPI_INT, dst, 0, MPI_COMM_WORLD);

}

void phantom_wait(int *rd, int src) {

 MPI_Status *status;

 MPI_Recv(rd, 1, MPI_INT, src, MPI_ANY_TAG, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

}

3.3.4 Mutex Protocol

The Mutex Protocol uses the corresponding functionality provided by the POSIX

standards. When executing on different nodes an approach similar to the Signal Protocol

is considered using the MPI_Send(), MPI_Recv() functions.

3.3.5 Repository File Access API

For accessing files on the Repository, the API is used as an interface for the

Deployment Manager which is responsible to download the corresponding file and

place it on the same node that the component is executed. From there, the component

accesses the file by using the File Access APIs that are mapped to the corresponding

standard C library functions. In this way, the Deployment Manager creates a hidden

layer that hides the intermediate transfers and virtualizes the Repository as a local file

storage space.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 24 Version 1.0 4 September 2018

Confidentiality: Public Distribution

3.4 INTEGRATION ASPECTS

3.4.1 Integration with the Deployment Manager

The PHANTOM Programming Interface is closely bound with the functionality of the

Deployment Manager (which will be described in D4.4) as the latter is responsible for

updating the code according to the deployment plan. In specific, the API calls are

modified accordingly to include information about the actual API function

implementations. The exact modifications will be described along with the full

functionality of the Deployment Manager. Additionally, the necessary files are

generated by the Deployment Manager in order to integrate the functionality of the

application components and coordinate the communication protocols.

Specifically, for the File Access API, the Deployment Manager communicates with the

Repository to download and place the necessary inputs on the corresponding

location/node or to upload the application outputs on the Repository.

3.5 INNOVATIONS BEYOND THE STATE-OF-THE-ART

3.5.1 Summary of new technologies/extensions developed

3.5.1.1 Programming Model Support

The driving principle behind the PHANTOM Programming Model is that, if followed, it

allows components to be moved automatically between deployment targets by the

Deployment Manager. It can be implemented with a wide variety of backend

technologies, from POSIX to CUDA to MPI, to support a wide range of implementation

targets.

The Programming Interface is primarily focused on supporting coordination and data

sharing between components, while still working in an environment such as the one that

is described above. The provided APIs use the C programming language, enabling the

incorporation of parallelization APIs (pthreads, OpenMPI, OpenMP and CUDA also

described in D4.1), while also providing an abstraction of the system architecture,

hiding the complexity between hardware and applications.

3.5.2 Full Prototypes functionality

The Programming Interface, in its full functionality, is responsible to satisfy the user‟s

needs for data exchanging and at the same time be abstract enough for the user to be

able to manipulate data across the component network transparently of the deployment

plan generated by the MOM. It also provides to the user an API qualified enough to be

able to coordinate these aforementioned data transactions, guaranteeing concurrency.

This is achieved by a hidden layer created by the Deployment Manager (described in

D4.4) which enables the connection between the application and the actual

implementation of the APIs.

The protocols that are described in the previous paragraphs are fully developed with

regard to the user needs. The implementation of the Programming Interface is

developed with regard to flexibility and simplicity for the user. Additionally, non-

functional system requirements are faced with the selection of low-communication-cost

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 25

Confidentiality: Public Distribution

libraries (e.g. pthreads) when applicable. The design of the functions also considers the

memory footprint that is used in order to optimize the memory transfers needed for the

execution.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 26 Version 1.0 4 September 2018

Confidentiality: Public Distribution

4. MODEL BASED TESTING

Model-Based Testing (MBT) designates any kind of testing based on or involving

models. Models represent the system under test (SUT), its environment, or the test

itself, which directly supports test analysis, planning, control, implementation,

execution and reporting activities. Besides the general list of MBT benefits [7] such as

complexity management, debug support, and so on, MBT in PHANTOM further

advances the design and implementation by deepening the following two testing

advantages.

 Enabling early testing. Since MBT are based on models, analyzing and simulating

models can provide insights of the intended implementation and detects potential

defects so as to eliminate defects in design phrase and prevent defects from

escalating to code level. The process does not involve the execution of real

applications, so that early testing is enabled in parallel with application

development.

 Improving testing effectiveness and efficiency. MBT formalizes testing-related

activities as models and automates as many activities as possible to improve testing

efficiency and effectiveness. Instead of writing a test case specification with

hundreds of pages, test cases are automatically generated from MBT models

following different criteria. The automatic test generation does not only improve the

testing efficiency but the testing effectiveness as well by providing a systematic

testing coverage for SUT.

Furthermore, compared to typical MBT activities in standard environments, the MBT

has been extended to the following three fields in PHANTOM with specific testing

strategies corresponding to each field.

 MBT in embedded environments. MBT for embedded is challenging due to the

heterogeneity and connectivity of embedded systems [8]. In PHANTOM, system

adapters have been developed to support the test execution in individual embedded

environments, as well as the PHANTOM integrated embedded environment. System

adapters provide communication channels between SUTs and MBT components. As

far as relevant system adapters are available, MBT is able to execute other test cases

reusing the system adapters over specific environments.

 MBT in parallel environments. PHANTOM‟s parallel environment enables the

parallel execution of components and the communications between components of

an application. In order to take this into account, the models developed in MBT

must be adapted to handle concurrency. In PHANTOM, we have developed MBT

models based on communicative state machine to capture both dynamic behaviors

of components and the communications within an application, and thus the test case

generated from the model are adapted to the parallel environment as well.

 MBT for component-based applications. PHANTOM applications are composed

by internal components with specific patterns to enable control and data flow.

Taking advantage of the component-based feature, we have developed two MBT

activities so analyze functional flow and non-functional dependency among

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 27

Confidentiality: Public Distribution

components as to enable early functional and non-functional testing without

executing the application.

The objective of MBT in PHANTOM is to carry out black box testing for both use case

applications and individual components of applications on the PHANTOM platform

with a focus on global functional and non-functional properties of distributed and

parallel computing environments. The SUTs are thus PHANTOM applications within

PHANTOM computing environments along with the applications‟ components.

Functional properties test that the SUT is able to produce the expected outputs when

given the corresponding inputs under specific configurations. Non-functional

properties refer to the SUT performance indicators such as execution time and energy

consumption monitored by PHANTOM platform.

Concretely, the MBT in PHANTOM are conducted in two phases - early validation and

test execution - along with four activities - model validation, performance estimation,

functional testing and non-functional testing. Early validation is realized by model

validation and performance estimation to check the functionalities of the intended

implementations and estimate the performance in parallel with the application

development, whilst test execution provides and executes concrete tests to conduct

thorough functional and non-functional testing. The details are presented in the

following sub sections.

4.1 USE CASE REQUIREMENTS

4.1.1 Initial Set of Requirements

MBT is applied in all three PHANTOM use case applications for quality assurance of

functionality and performance. The initial set of requirements is presented in Appendix

3, and all requirements are met.

In addition to the general requirements on PHANTOM platform, specific use case

requirements related testing are also identified by each use case in terms of specification

documents. The three use case applications, i.e., Surveillance use case by GMV,

Telecom use case by Intecs and HPC use case by HLRS, as well as their internal

components in PHANTOM are the main SUTs of MBT. The specifications describe the

expected functions and performance, which are presented in Appendix 4.

4.1.2 Preliminary use case feedback from M18 results

The first cycle of MBT has been conducted in the second year of the project and

reported in D3.1, the focus of which are the model validation and functional testing for

all three use case applications in individual environment (CPU and FPGA). Following

that, the MBT work had been evaluated in the three parts: a) requirement coverage by

use case partners, b) RRL by R&D partners, and c) KPIs of MBT by use case partners,

as identified in D5.1, with the following preliminary feedback.

 Requirement coverage: requirements U29, U30 and U31 are respectively

“somewhat covered”, “somewhat covered” and “not yet covered” from requirement

coverage evaluation. The main reasons for U29 and U30 are MBT are conducted in

individual environments instead of a fully integrated heterogeneous HW targets, and

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 28 Version 1.0 4 September 2018

Confidentiality: Public Distribution

the testing on integrated PHANTOM HWs has been done in the third year; the

requirement coverage for U31 is “not yet covered” because the testing was mainly

achieved by testers with extra development efforts to support test execution; in the

third year we have provided two different APIs with use case partners to develop

test cases, nevertheless U31 is a requirement with low priority.

 RRL: the overall reuse readiness level of MBT was 4 at the end of second year of

the project; the improvement has been made in dimensions of documentation,

intellectual property and support during the third year.

 KPIs of MBT: the MBT related KPIs are KPI 3.1 to 3.4 defined in D5.1, and the

overall feedback about testing efficiency and effectiveness are satisfactory along

with a high-level testing coverage of testing requirements.

At the end of the third year, a final evaluation of MBT will be realized and the

validation results will be reported in D5.4 on M36.

Besides the preliminary feedback from use cases proving promising MBT results, some

specific requirements and expectations have also been collected based on the MBT

results in the second year. The specific requirements are illustrated as follows along

with the specific tackling actions in the third year:

 MBT for updated use cases: use case applications have been improved based on

previous testing results and have been updated with additional scenarios,

components and functionalities. MBT in the third year has focused on the updated

three use case applications.

 MBT for integrated PHANTOM environments: Along with the integration of use

cases and different PHANTOM components with HWs, use case applications on

PHANTOM heterogenous hardware with integrated interfaces needed to be tested

for global quality assurance. MBT in the third years has developed extra

components to support test execution in PHANTOM integrated environment.

 Early non-functional testing: model validation enabling early functional testing to

detect defects proves to be effective. In the meantime, early testing for performance

is expected to test non-functional properties of an application at the design phrase to

validate the non-functional properties of intended implementation. We have

implemented the performance estimation for early non-functional testing by

considering the component-based feature and previous testing results of individual

component.

4.2 DESIGN SPECIFICATIONS

Concretely, we have designed the MBT in PHANTOM as four testing activities (1 to 4

in Figure 4-1) in two main phases (I and II in Figure 4-1) to test both functional and

non-functional properties of the SUT. Figure 4-1 lists the MBT activities in PHANTOM

and the alignment with PHANTOM stages identified in D1.3, while the details are

introduced below.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 29

Confidentiality: Public Distribution

Figure 4-1 MBT activities in PHANTOM

4.2.1 Early Validation

Early validation is the first MBT phrase in PHANTOM, which tests and validates the

design of an application‟s functional and non-functional properties. Early validation

only relies on design specifications but does not require the execution of applications,

and it is an early testing phase in parallel with the application development to detect

design defects for follow-up correction and prevent them from escalating to

implementation.

Specifically, the following two MBT activities - model validation and performance

estimation - are conducted during early validation in parallel with PHANTOM

development and preparation stage of applications. Model validation tests the functional

aspect of applications, while performance estimation covers the application‟s non-

functional performance.

4.2.1.1 Model validation

The model validation simulates the MBT models to check if the intended

implementation contains any functional defects such as deadlock or over-designing

(parts of the model never activated) and provides a summary for all detected functional

defects. The corresponding workflow is illustrated in Figure 4-2.

Figure 4-2 Model validation workflow

In all figures in section 4.2, the green rectangles represent MBT steps in one activity.

The start and end point of an arrow represents inputs and outputs of this step, and the

start and end point of the whole workflow is the global inputs and outputs of this MBT

activity.

Step 1. Model Creation. In the first step, we create MBT models from use case

specifications. The specifications define the testing requirements or the aspects to test of

SUT (e.g., functions, behaviours and performances). The created MBT models represent

high-level abstractions of SUT and are described by formal languages or notations such

as UML, PetriNet and BMPN. In PHANTOM, communicative state machine is used as

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 30 Version 1.0 4 September 2018

Confidentiality: Public Distribution

the meta model for the creation of MBT models to consider the communication of

application components.

 Inputs: Specifications

 Outputs: MBT models

Step 2. Model Simulation. In this step, simulation scenarios with necessary data are

automatically generated from MBT models and used to simulate MBT models. During

model simulation, MBT models are validated regarding whether, under what conditions,

and in which ways a part of model could fail to produce the correct outputs, and the

corresponding deadlocks and over-designing are recorded.

 Inputs: MBT models

 Outputs: Model validation results

4.2.1.2 Performance estimation

Performance estimation estimates the non-functional properties (e.g., execution time,

energy consumption) of newly designed applications by considering PHANTOM

component network and previous non-functional testing results. PHANTOM

applications are composed of components, and a new application can be easily created

to recompose existing components in a different way for different tasks, such as the

HPC scenario to simulate different topological structures with same simulation

components. If all the inner components of the new application are previously tested

with performance information, the performance of the application is than deduced by

use of the previous testing results and their composition patterns. The corresponding

workflow is illustrated in Figure 4-3.

Figure 4-3 Performance estimation workflow

Step 1. Performance Estimation. In PHANTOM, each application is described by an

xml file of component network indicating the internal components of an application and

the patterns how the components are composed together. When given a component

network description of an application, this step identifies the composition patterns

among inner components, estimates the performance of the application based on an

estimation model related to each non-functional property, and provides the estimation

results.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 31

Confidentiality: Public Distribution

 Inputs: Component network description and previous test execution results.

 Outputs: Performance estimation results.

This is particularly useful to estimate the performance of applications that reuse existing

components and compose them in different ways to complete other computing tasks,

such as HPC to simulate different topological structures with same components.

4.2.2 Test Execution

Test execution is the second MBT phrase in PHANTOM to execute concrete test cases

against the SUT and collects thorough testing results for both functional and non-

functional properties. Testing results are sent back to developers for further analysis and

improvement. During the whole test execution phrase, traceability is kept between SUT

specifications, test cases and testing results, so that developers can easily trace the

defects sources from testing results to design specifications, and correct the defects

based on the testing results.

The corresponding workflow of functional and non-functional testing activities is

illustrated in Figure 4-4. Both functional testing and non-functional testing shares the

same general workflow. However, since the functional testing and non-functional

testing have different testing aspects, the MBT models and the executed test cases for

the two activities are different from one another. The MBT models and test cases of

functional testing focuses the inputs/output data flow for functionality, while the ones

for non-functional testing collects performance information during the test execution

and checks if the SUT meets the performance criteria.

Figure 4-4 Functional and non-functional testing workflow

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 32 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Step 1. Model Creation. In the first step, we create MBT models from use case

specifications for test generation purpose.

 Inputs: Specifications

 Outputs: MBT models

The MBT models for test generation are different from the MBT models for validation

in the following two points. Firstly, the MBT models for test generation do not only

include the SUT‟s functional aspect of dynamic behaviours, but also contain the non-

functional testing state and transitions to collect performance information. Secondly, the

MBT models in the test execution phase focus on global inputs and outputs, which are

different from MBT models in early validation phases with internal control and data

details. This is because in order to provide a comprehensive validation result, the MBT

models in early validation phase are expected to contain both internal data/control flows

of components within an application as well as the global input-output relations

between an application and its environment. Since the early validation is in parallel with

development and does not impose timing constraints, a detailed model is important to

largely exploit the model behaviours and detect early stage defects. On the other hand,

the MBT models in test execution phase for test generation simply contains necessary

input-output relations, as only inputs and outputs information are used to decide the

pass/fail of a test, while internal communication is not captured during application

execution, which also helps to improve testing efficiency.

Step 2. Test Generation. The second step automatically generates abstract test cases

from MBT models when applying the test selection criteria. Test selection criteria guide

the generation process by indicating the interesting focus to test, such as certain

functions of the SUT or the structure of the MBT model (e.g. state coverage, transition

coverage and data flow coverage). This process is typically automated by tools with test

selection criteria options corresponding testing requirements.

 Input: MBT models

 Output: abstract test cases

Step 3. Concretization of Test Cases. The third step concretizes the abstract test cases

from step 2 to executable test cases with mappings between the abstraction in MBT

models and system implementation details. Executable test cases contain low-level

implementation details and can be directly executed against the SUT.

 Input: abstract test cases

 Output: concrete test cases

Step 4. Execution of Test Cases. The executable test cases are automatically executed

against the SUT. During the execution, the SUT is provided with inputs from each test

case, and the outputs (for functional testing) and performance information (for non-

functional testing) are collected to generate test verdicts.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 33

Confidentiality: Public Distribution

 Input: executable test cases, system adapters

 Output: test verdicts, non-functional information

The four steps are performed iteratively and incrementally throughout development.

The MBT process in PHANTOM implements this iterative and incremental approach,

helping to guarantee full alignment with the test objectives and to keep MBT modelling

activities efficient. The MBT process thus starts in parallel with the application

development and assists the developers through the entire development process.

4.2.2.1 Functional testing

Functional testing automatically generates test cases from MBT models, stimulates the

SUT in the PHANTOM environment with different test cases with input data, and

compares the observed output with the expected output to decide if the tests pass or fail.

In case that a test fails, feedback is reported to developers for correction and

improvement.

4.2.2.2 Non-functional testing

Following the same workflow as functional testing, non-functional testing tests the

performance of the SUT by executing the non-functional test cases generated from

MBT models. At the end of test execution, non-functional properties are collected to

provide information to other PHANTOM components (i.e. the MOM) as an initial

mapping reference between application components and hardware, and MBT

performance estimation to evaluate the newly design application‟s performance. In the

meantime, the obtained values of non-functional properties are checked with the non-

functional requirements to decide if the SUT performance is satisfactory.

4.3 IMPLEMENTATION DETAILS

We have implemented and conducted all the four MBT activities (i.e., model validation,

performance estimation, functional testing and non-functional testing) in two phases

(i.e., early validation and test execution) for all three use case applications in

PHANTOM. All testing results have been reported to developers. All MBT activities

have been performed iteratively and incrementally starting with a preliminary

specification for early validation and an early prototype for test execution. Any

preliminary testing results were sent back to developers for application updates. With

the further advance of the design and development of applications, MBT activities are

correspondently updated to take into account new features. The MBT process in

PHANTOM implements this iterative and incremental approach, helping to guarantee

full alignment with the test objectives and to keep MBT modelling activities efficient.

The MBT process starts in parallel with the application development and assists the

developers through the entire development process.

In order to realize the MBT workflow for each activity, a number of MBT components

are developed. The implementation details along with testing results are introduced in

the following sub-sections.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 34 Version 1.0 4 September 2018

Confidentiality: Public Distribution

4.3.1 Model validation

In model validation, we have developed the MBT models for each use case application

and simulated the MBT model by DIVERSITY tool [10] to detect deadlock or over

designing. Figure 4-5 shows the implementation details to achieve model validation.

Figure 4-5 Model validation implementation

In all figures in section 4.3, the green rectangles represent the MBT steps in each MBT

activity. The pink rectangles associated with green rectangles represent the MBT

components we developed in PHANTOM to achieve this MBT step, and the blue

rectangles represents the tool we use to support this MBT step.

MBT models. For each use case application, we developed a communicative state

machine MBT model based on the case‟s specifications for simulation purpose.

Individual models are first created for each component and then another model for the

whole application are created to reuse and combine all individual component models.

This mirrors how components are composed within the application. The validation of

this MBT model allows a thorough exploitation of an application‟s behaviours during

model validation.

In PHANTOM implementation, MBT models are created based on the metamodel

“communicative state machine”, communicative state machine is an extension of UML

state machine, which models each individual application component as a state machine

along with ports among state machines to enable the information exchange. This is

particularly important in PHNATOM to take into account the communications among

internal components and parallel architecture in PHANTOM.

To create the MBT models based on communicative state machines, we adopt the xLIA

language due to the variety of primitives and the support of encoding all classical

semantics. The MBT models are created in xLIA language within a textual

environment. The following models for model validation are developed in PHANTOM:

 Telecom models for model validation

 HPC models for model validation

 Surveillance models for model validation

Although the models are created within a textual environment based on xLIA, we

illustrate in the graphical visualization of the Telecom model as an example. In the

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 35

Confidentiality: Public Distribution

figure, we present a global view of the model in the first half while a zoom view with

details in the second half.

Model simulation tool. The model simulation is achieved by DIVERSITY.

DIVERSITY is an open-source Eclipse based tool for formal analysis. We use

DIVERSITY for model simulation purpose due to its support for symbolic execution.

Symbolic execution uses symbolic parameters to represent simulation inputs rather than

concrete numerical values so that multiple scenarios can be evaluated at the same time

to simulate the models and explore the model behaviours more efficiently. Figure 4-7

illustrates the model simulation result for the Telecom use case, in which the left part

shows the simulation process has covered all dynamic behaviours of the model, and the

right part indicates that no deadlock or overdesign is detected.

Figure 4-6 Telecom models for model validation

4.3.2 Performance estimation

In Performance Estimation, we have identified the composition patterns and defined the

estimation model for each performance property related to the composition pattern, and

we have developed an MBT component, i.e., model-based estimator, to take as inputs of

the application‟s component network description and previous testing results to produce

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 36 Version 1.0 4 September 2018

Confidentiality: Public Distribution

performance estimation results. Figure 4-8 shows the implementation details to achieve

the model validation.

Figure 4-7 Model simulation results for Telecom use case

Figure 4-8 Performance estimation implementation

Model based Estimator. We have identified four types of composition patterns (i.e.,

sequence, parallel, condition and iteration) to represent the composition relations among

application components. They cover most of the structures specified by workflow

languages or workflow patterns [11]. For each performance property, we have defined

an estimation model as shown in Table 4-1 to calculate the application‟s performance

based on their individual components‟ performance and composition patterns.

Table 4-1 Estimation model for performance properties. k is the iteration time.

Property Name
Estimation Methods for Composition Patterns

Sequence Parallel Condition Iteration

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 37

Confidentiality: Public Distribution

Based on the estimation model, we have developed the model-based estimator. When

given a component network description of a newly designed application, the model-

based estimator analyses each component in the network and checks the previous

testing results for each component and produces an estimated result for the newly

designed application on each performance property. Figure 4-9 presents the

performance estimation result of execution time for an HPC application. This

application reuses three components A_1, A_2, A_3, and the component network is

defined in Simulation5.

Figure 4-9 Performance estimation results for HPC application

4.3.3 Functional testing and non-functional testing

We have developed a number of MBT components for the test execution phase to

enable functional and non-functional testing. We have developed MBT models for each

use case and generated test cases from MBT models by applying selection criteria. We

have also developed TTCN-3 publisher and codecs/decodecs to improve and concretize

the generated test cases with real testing data and the system adapters to enable test

execution. The development of models and other testing components starts in parallel

with development and preparation based on specifications, and once the application is

Execution Time (ET) ∑

 max(eti) max(eti) (et)*k

RAM Usage (RU) ∑

 ∑

 max(rui) (ru)*k

Reliability (RE) ∏

 ∏

 min(rei) (re)
k

Energy Consumption (EC) ∑

 ∑

 max(eci) (ec)*k

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 38 Version 1.0 4 September 2018

Confidentiality: Public Distribution

ready to run, concrete test cases are executed to conduct both functional testing and

non-functional testing. Figure 4-10 shows the implementation details to achieve the

model validation.

Figure 4-10 Functional and non-functional testing implementation

MBT models. Similar to the MBT models in early validation phase and following use

case specifications, we have manually developed communicative state machine MBT

models for each use case in xLIA. The MBT models are used to drive the test

generation. As introduced in section 4.2, the MBT models for test generation focuses on

global inputs and outputs relations and are created as independent models considering

only application-level input and output while ignoring the inner communications

amongst components. This consequently allows rather efficient test generation,

execution and updates.

For each use case, the MBT models for test generation consist of two parts, i.e.,

functional testing model and non-functional testing model.

 Functional testing models represent all the dynamic behaviours of a SUT, and the

corresponding generated test cases stimulates the SUT with specific inputs and

collect SUT outputs to determine the correct functionality of SUT

 Non-functional testing models comprise representative SUT behaviours and the

corresponding generated test cases stimulates the SUT with specific inputs and

collect SUT performances to decide if the non-functional requirements are satisfied.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 39

Confidentiality: Public Distribution

In PHANTOM, in order to facilitate test generation and management, we combined the

functional and non-functional testing models as one model for each SUT. The following

models for test generation are developed in PHANTOM:

 Telecom models for test generation

 HPC models for test generation

 Surveillance models for test generation

The Telecom use case application is function-driven in which a number of control flows

dominate the application and the MBT models contain relatively rich states and

transitions. The Surveillance and HPC use cases are data-driven in which applications

are enabled by data flow to take inputs and generate outputs and thus the MBT models

for the two use cases are rather simple on input and output data relations but focus on

performance properties. The code below illustrates part of the surveillance model for

test generation in xLia language.

@xlia< system , 1.0 >:

system<and> GMVApplicationSystem

{

 @property:

 … …

 @machine:

 statemachine< or > GMVApplicationMachine {

 @private:

 port input RequestUpload(InputImage);

 port output ResponseProcessedImage(OutputImage);

 port input RequestExecute(CommandLine);

 port output ResponseExecutionResult(CommandLineResult);

 @region:

 state<initial> State_ImageNotUploaded

 {

 transition UploadImage --> State_ImageUploaded

 {

 input RequestUpload(vInputImage);

 }}

 state State_ImageUploaded

 {

 /* Processing the image */

 transition ProcessImage --> State_ImageProcessed

 {

 input RequestExecute(vCommand);

 guard (GMV_APPLICATION == vCommand);

 output ResponseExecutionResult(NO_ERROR);

 }

 }

 … …

}

Test Generation Tool. The test generation is supported by tool to generate abstract test

cases from MBT models following predefined selection criteria. In PHANTM, we use

the DIVERSITY tool for test generation same as the model simulation tool.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 40 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Besides its open source nature and symbolic execution, another reason why we use

DIVERSITY for test generation is that it generates test cases in the standard testing

language TTCN-3 [12]. TTCN-3 is a standardized testing language developed by ETSI

(European Telecommunication Standards Institute), with the advantages of multi-

purpose testing support compared to other testing languages such as real-time support

and distributed execution support, which highly align with the testing requirements and

challenges in PHAMTOM distributed embedded environment.

In PHANTOM, the MBT models are created in terms of communicative state machines

with states and transitions, and we use the transition coverage as the selection criteria to

generate test cases in order to cover all transitions and test all aspects in specifications.

We have generated a suite of test cases for each use case application, and the code

below illustrates part of the generated test cases for surveillance use case in TTCN-3.

module TTCN_TestsAndControl {

 import from TTCN_Declarations all;

 import from TTCN_Templates all;

 altstep RTDS_fail() runs on GMVApplicationSystem {

 }

 testcase TC_trace1() runs on runsOn_GMVApplicationSystem sys-

tem GMVApplicationSystem {

 activate(RTDS_fail());

 cEnv.send(RequestUpload_trace1_LINK_0)

 cEnv.send(RequestExecute_trace1_LINK_1)

 cEnv.receive(ResponseExecutionResult_trace1_LINK_2)

 cEnv.receive(ResponseProcessedImage_trace1_LINK_3)

 setverdict(pass)

 }

 … …

}

TTCN-3 Publisher. We have developed an MBT component, i.e., TTCN-3 Publisher,

to further improve the test cases generated by DIVERSITY and provide additional

testing function support.

As an open source tool for test generation, DIVERISTY is powerful for its generation

algorithm and standard support, but also comes with some limitations (e.g., lack of

documentation). Particularly, the TTCN-3 format that DIVERSITY uses doesn‟t fully

align with the ETSI standard specification of TTCN-3, and the generated test cases

contain errors. Thus, the primary role of TTCN-3 publisher is to assist the test

generation process for error correction; furthermore, the generated test cases contain

only basic testing functions to send and collect information, the TTCN-3 publisher

further improves the generated test cases with better modularisation and timer functions

to conclude a test case is inclusive when the execution time of a component is over than

a threshold.

TTCN-3 publisher takes test cases generated from DIVERISTY as input and generates

the updated TTCN-3 test cases with additional testing function support and error

correction. Figure 4-11 presents part of TTCN-3 Publisher implementation in Java.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 41

Confidentiality: Public Distribution

Figure 4-11 TTCN-3 Publisher Implementation

Codecs/Decodecs. Since automated test execution require test cases to be extremely

precise, a test adaptation layer is required to provide the mapping between abstraction

contained in the abstract test cases and the real data in the real implementations, to

ensure the successful executions of the generated test cases. Codec/Decodec provides

the function to transform abstract test cases to executable ones by providing mappings

between the abstraction in MBT models and real testing data.

The Codec/Decodec is specific to MBT model and the corresponding test cases. The

following three Codecs/Decodecs have been developed in TTCN-3 in PHANTOM to

support the concretization of test cases for three use case applications.

 Codec/Decodec for Telecom application

 Codec/Decodec for HPC application

 Codec/Decodec for Surveillance application

The code below illustrates part of Codec/Decodec implementation for Surveillance

application

module TTCN_Ports {

 import from TTCN_Enumerations all;

 import from TTCN_Structures all;

 import from GMV_Pixits all;

 import from ShellAdapter_Port all;

 import from ShellAdapter_PortTypes all;

 external function CheckReturnedImage(in charstring

p_ProcessedImage, in charstring p_CorrectProcessedImage) return

boolean;

 type port Generic_Port message {

 out RequestUpload;

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 42 Version 1.0 4 September 2018

Confidentiality: Public Distribution

 in ResponseProcessedImage;

 out RequestExecute;

 in ResponseExecutionResult;

 } with {

 extension

 "user ShellAdapter

 in(ShellAdapter_DownloadImage -> ResponseProcessedImage

 :function(f_dec_SADownloadImage_to_ResponseProcessedImage))

 out(RequestUpload -> ShellAdapter_UploadImage

 :function(f_enc_RequestExecute_to_SAUploadImage))

 in(ShellAdapter_ReturnValue -> ResponseExecutionResult :

 function(f_dec_SAReturnValue_to_ResponseExecutionResult))

 out(RequestExecute -> ShellAdapter_Command

 :function(f_enc_RequestExecute_to_SACommand))"

 };

… …

}

System Adapters. System adapter provides communication channels to automatically

execute test cases by connecting SUT with the test execution environment and data

exchange. Generally, system adapter is specific to applications (i.e., Telecom, HPC,

Surveillance) and running environments. In PHANTOM, we have developed individual

system adapters for each use case interface as well as a universal system adapter for the

PHANTOM Repository, which provides an abstraction over different applications and

running environments, and thus a unified application-agnostic and environment-

agnostic interface for users and testers.

The following system adapters have been developed in TTCN-3 and C++ to support the

test execution for applications over different environments.

 System Adapter for Telecom Application over standard Linux

 System Adapter for Telecom Application over ZedBoard

 System Adapter for HPC Application over standard Linux

 System Adapter for Surveillance Application over standard Linux

 System Adapter for environment-agnostic PHANTOM Repository

Particularly, the latest efforts have been spent on developing the system adaptors for the

newly integrated PHANTOM Repository so as to establish the data flow over

PHANTOM Repository and enable the test execution over the PHANTOM

environment-agnostic interface. The code below illustrates part of the System Adapter

implementation for PHANTOM repository.

void ShellAdapter::send(const ShellAdap-

ter__PortTypes::ShellAdapter__Command& send_par, const COMPONENT&

destination_component)

{

if(!is_started)

 TTCN_error("Sending a message on port %s, which is not

started.", port_name);

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 43

Confidentiality: Public Distribution

if(!destination_component.is_bound())

 TTCN_error("Unbound component reference in the to clause of

send operation.");

 const TTCN_Logger::Severity log_sev = destina-

tion_component==SYSTEM_COMPREF?TTCN_Logger::PORTEVENT_MMSEND:TTCN_Lo

gger::PORTEVENT_MCSEND;

 if(TTCN_Logger::log_this_event(log_sev)) {

 TTCN_Logger::log_msgport_send(port_name, destina-

tion_component,

 TTCN_Logger::begin_event(log_sev, TRUE),

 TTCN_Logger::log_event_str("

@ShellAdapter_PortTypes.ShellAdapter_Command : "),

 send_par.log(),

 TTCN_Logger::end_event_log2str()));

}

 if (destination_component == SYSTEM_COMPREF) {

 void)get_default_destination();

 outgoing_send(send_par);

 }

 else {

 Text_Buf text_buf;

 prepare_message(text_buf,

"@ShellAdapter_PortTypes.ShellAdapter_Command");

 send_par.encode_text(text_buf);

 send_data(text_buf, destination_component);

 }

}

… …

The collection of the developed MBT components enables the execution of the

generated test cases for each use case. In the PHANTOM implementation, functional

testing and non-functional testing are conducted for all three use cases. Figure 4-12

presents the screenshot of the test execution for Telecom use case. The testing results

are sent back to developers, and the use case applications have been updated

correspondingly.

Figure 4-12 Test execution screenshot

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 44 Version 1.0 4 September 2018

Confidentiality: Public Distribution

4.3.4 Implementation summary

As a summary of the MBT implementation, we have developed all described

components and conducted the four designed MBT activities for three use cases. Table

4-2 summarizes the MBT components developed in PHANTOM, in which some

components are use case specific, some are interface specific, and some are use case

independent. Table 4-3 illustrates the MBT activities conducted for each use case.

Table 4-2 MBT components developed in PHANTOM

 Use Cases

 Telecom HPC Surveillance

MBT

Components

Models for Validation Models for Validation Models for Validation

Model based Estimator

Models for Test Generation Models for Test Generation Models for Test Generation

TTCN-3 Publisher

Codec/Decodec Codec/Decodec Codec/Decodec

System Adapter for Linux System Adapter for Linux System Adapter for Linux

System Adapter for ZedBoard

System Adaptors for PHANTOM Repository

Table 4-3 MBT Implementation in PHANTOM

4.4 I

N

TEGRATION ASPECTS

The MBT solutions has been entirely integrated into the PHANTOM platform, covering

all PHANTOM stages with close interactions between MBT workflow and other

PHANTOM components, so as to support of PHANTOM platform quality assurance

and optimization.

The two following points are identified as the key objectives for integration, and the

objectives have been specified and achieved in the integration implementation.

Objective 1: To define the interaction interfaces between the MBT workflow and

the PHANTOM architecture components

MBT Activities Use Cases

Telecom HPC Surveillance

 Model Validation √ √ √

 Performance Estimation √ √ √

 Functional Testing √ √ √

 Non-Functional Testing √ √ √

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 45

Confidentiality: Public Distribution

During development, MBT takes design specifications from use cases and produces

early validation results. During runtime, MBT stimulates SUTs in the PHANTOM

environment and collect outputs files and performance information during the whole

process. This involves the interaction between MBT components and use case

applications, as well as MBT components and PHANTOM architecture components.

Objective 2: To specify the data flows over the interaction interfaces to enable the

MBT testing activities

Use case developers use PHANTOM native interfaces to send inputs to application and

get back output data; MBT testers reply on the same interfaces to collect files, send

data, and get results. Particularly, when an application is deployed in the PHANTOM

platform, MBT needs to test both the entire application and its individual components.

Specific data flows need to be identified to enable the execution of either an application

or only one individual component in PHANTOM.

4.4.1 PHANTOM platform interfaces

The PHANTOM platform mainly relies on the Repository to exchange information and

enable control flow via notifications. The Repository provides HTTP interfaces and a

publication / subscription mechanism to all PHANTOM components, which allows

developers, testers and users to realize necessary data and control flow for task

execution. The MBT relative information sent and received via the Repository includes:

 Use Case Specification documents, which describe the intended functionalities and

non-functional requirements of applications.

 The Platform Description, Component Network, and Deployment Plan

 Input and Output data, which describe the necessary inputs for an application and its

outputs at the end of execution;

Besides the Repository, the Application Manager is the second component to enable the

interactions between users and testers to achieve the relative manipulation with

application executions, the exchanged data include:

 Start Trigger, which notifies and starts the execution of an application

 End Signal, which notifies the end of execution when the execution of application is

over.

 Performance Information, which describes the performance information related to a

task.

4.4.2 MBT interaction flow with PHANTOM

The general interaction flow between MBT activities is to read the appropriate inputs

(use case specification for Model Validation, component network for Performance

Estimation), perform the validation or estimation, and then store the results back in the

Repository. For functional and non-functional testing, the Application Manager is used

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 46 Version 1.0 4 September 2018

Confidentiality: Public Distribution

to trigger the start of the deployed application/components. Once execution has

completed, the Application Manager notifies the MBT tools which fetch the collected

data.

1. Model Validation

Step 1. MBT gets the use case specification documents from Repository.

Step 2. MBT sends the model validation results to Reposiory after model validation.

2. Performance Estimation

Step 1. MBT gets the use case component network from Repository.

Step 2. MBT sends the estimated results to Repository after performance estimation.

3. Functional and non-functional testing

Step 1. MBT firstly gets from Repository a) platform description, and b) component

network.

Step 2. MBT sends input data to the Repository.

Step 3. MBT sends deployment plan to the Repository. This step is optional, and it is

only necessary when MBT tests individual component instead of the whole application:

in this case, the deployment plan contains only description about one component and

PHANTOM will use the new received deployment plan to deploy components to be

executed.

Step 4. MBT sends the start trigger of execution to the Application Manager, and the

platform starts the execution of application/components.

Step 5. Once the execution is over, the Application Manager sends to end signal to

MBT.

Step 6. MBT gets the output data from the Repository. In case the output data is too

large (e.g. a large image), the location where output data is stored will be sent back

instead.

Step 7. MBT gets performance information from the Execution Manager. This step is

necessary when non-functional testing is performed.

Step 8. MBT sends functional and non-functional testing results to the Repository.

4.5 INNOVATIONS BEYOND THE STATE-OF-THE-ART

4.5.1 Summary of new technologies/extensions developed

As illustrated in Table 4-2, 16 MBT components have been developed in PHANTOM to

enable the four MBT activities of use case applications, including:

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 47

Confidentiality: Public Distribution

 MBT Models for Validation. Specific models in xLIA for Telecom, HPC and

Surveillance applications. The MBT models we developed are based on

communicative state machine, an extension of state machine, to consider parallel

architecture and communication between components of PHANTOM applications.

 Model based Estimator. General MBT component in Java for all use cases to

estimate performance of newly designed applications.

 MBT Models for Test Generation. Specific models for the three use cases

including both functional testing and non-functional testing modelling aspects. The

test generation is realized by symbolic execution for testing efficiency improvement.

 TTCN-3 Publisher. General MBT component in Java for all test cases. The TTCN-

3 publisher provides error fixes, modulization and testing timers to better manage

test complexity in PHANTOM.

 Codecs/Decodecs. Specific MBT components in TTCN-3 for three uses cases.

 System Adapters. Specific MBT components in TTCN-3 and C++ to support the

test execution for all three use cases over PHANTOM environment, in Linux and

another system adapter for Telecom use case on ZedBoard.

The MBT components developed in PHANTOM provide modularized functionalities

and they are reusable for further testing activities. For examples, MBT models and test

cases can be easily ported between different running environments; system adapters can

be used to execute additional test cases in the same interfaces; TTCN-3 publisher can be

applied to improve other TTCN-3 test cases.

Moreover, based on the design and implementation of MBT in PHANTOM, EGM has

submitted an application of innovation patent.

 MBT patent. The MBT patent is prepared based the design and implementation of

MBT activities in PHANTOM.

4.5.2 Full Prototypes functionality

The testing solution in PHANTOM is designed and implemented based on model based

techniques and has advanced a step further for early testing enablement and testing

effectiveness and efficiency improvement. Taking full advantages of the MBT

innovations, MBT extensions have been made to parallel, embedded environments for

component-based application testing. Concretely the full prototype provides the

following four functionalities.

Model Validation. When given MBT models describing the dynamic behaviours of a

SUT, model validation simulates the models with necessary data and detects the defects

of deadlock or over designing. Based on the simulation results, a full MBT report is sent

back to developers. Model validation is conducted based on the design specification of

SUT and in parallel with the development process, so as to provide an efficient way to

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 48 Version 1.0 4 September 2018

Confidentiality: Public Distribution

detect the defects in the design phase and prevent them from escalating to

implementations.

Performance Estimation. Performance estimator is able to estimate the performance

information about a newly designed component-based application. When given the

component network description of an application, performance estimation analyses the

composition relations among each component and deduce the performance of the whole

application based on the previous testing results of each component. This is the second

functionality, besides model validation, to provide early testing insights without running

the real application in parallel with application development.

Functional Testing. Taking use case specifications as inputs, the functional testing is

able to automatically generate test cases from MBT models, execute the test cases by

simulating SUT with necessary inputs and collect corresponding outputs to check the

correctness of functionality implementation. The generated test cases provide a

systematic coverage to test system functionalities, and thanks to the MBT components

developed in PHANTOM, the execution of test cases is automated to provide thorough

execution results at the end.

Non-functional Testing. Non-functional testing takes use case non-functional

requirements as testing focuses. The executed test cases do not cover all but only

representative behaviours of SUT and collect execution related performance

information to test if the all the non-functional requirements from specifications are

satisfied. Besides the performance part, non-functional testing also helps developers to

study the relation between parameter value and performance (e.g., in HPC use cases),

which is an extension since the MBT does not only generate the test cases but the

testing data as well.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 49

Confidentiality: Public Distribution

5. PHANTOM MONITORING LIBRARY

The architecture of the PHANTOM run-time Monitoring Framework (MF) enables

application optimization based on the understanding of both software non-functional

properties and hardware quality attributes with regards to performance and energy

consumption. Figure 5-1 shows the architecture of the MF, which is composed of an

MF server, the MF client, and the MF library.

The MF-Library was integrated with the MF-Server under task 2.2 "Unified runtime

monitoring implementation". However, we consider that MF-Library API, targeting to

enable the collection of metrics at application level in a user-defined manner, has to be

described in D3.2 because it is where are described the PHANTOM APIs

("Programming interfaces (APIs) per application class" task 3.2). This allows having all

the tools used for the instrumentation of the applications in one place, as well as helps to

provide a more clear view on the purpose and future use of the MF-Library API.

5.1 USE CASE REQUIREMENTS

The requirements that consist of two sets – the initial set of requirements, imposed by

the use case providers at the beginning of the project and specified in Deliverable D1.1,

and additional requirements that were obtained from the M18 evaluation – are provided

in Appendix 5.

5.2 DESIGN SPECIFICATIONS

The PHANTOM Monitoring Library abstracts users from the metric collection process.

The library provides for the users the mechanism to select the metrics to be collected

during the execution of their applications at the system and application levels, as well as

to configure the frequency of sampling. This mechanism is absent from existing tools.

The MF library additionally allows the collection of user-defined metrics. Each user

metric is composed of a text label and a value or a set of values, which are

automatically timestamped. This allows the users to measure, for example, the

execution time of loops or subroutines by registering user-defined measures in the code.

Such user-defined metrics are also missing from existing tools.

5.2.1 Architecture

The Monitoring Library has been developed as an extension to the monitoring solution

elaborated by the EU projects EXCESS and DreamCloud. (see Figure 5-1).

The PHANTOM MF-Library (application-level monitoring and user-defined metrics

collection) provides a user library and several APIs for instrumentation of the users‟

applications. It allows users to control and adjust the metric collection process by means

of the user-level APIs. The PHANTOM Monitoring Framework follows the client-

server architecture, according to which the runtime monitoring information is collected

by means of a monitoring agent service (deployed on each of the monitored hardware

resources) and transmitted to a centralised service (the monitoring server) that is usually

deployed on a dedicated resource.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 50 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Figure 5-1 PHANTOM Monitoring Framework Architecture. In the figure is highlighted the
instrumented applications with the MF library.

In order to achieve monitoring of metrics in both at System and Application Levels, the

monitoring workflow is divided into two parts. As shown in Figure 5-2, devices can

keep being monitored and alternatively the users can instrument their code and monitor

at the application level using the MF Library, or use these two methods at the same time

to obtain both kinds of collection of metrics.

Figure 5-2 Infrastructure-level monitoring with the Monitoring Client, and Application-level
monitoring with apps instrumented with the MF library.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 51

Confidentiality: Public Distribution

Infrastructure-level, an MF client is firstly required to be installed on a specific target

platform. Then the MF client collects the user-configured metrics at a customizable

frequency and sends the collected data periodically to the server side.

Application-level metrics are obtained via a user library that allows code

instrumentation and fine-grained monitoring. The Instrumented code can make use of

the plugins supported by the Monitoring Client. In addition to the predefined

application-level metrics, the user library supports user-defined metrics profiling as

well.

Both levels of the monitoring-workflow are designed to be pluggable. Each plug-in has

associated some particular metrics which are sampled and formatted periodically. The

plugins to be loaded as the default configuration for each computation node are

registered by the user at the Resource Manager Server.

The monitoring services (at infrastructure and application levels) will use that configu-

ration as a default one. However, the MF-Library provides to the users the flexibility to

choose a different configuration for each application at the application level. Depending

on the configuration of plug-ins and metrics, the plug-in manager checks the availabili-

ties of the user-interested plug-ins, activates the associated metrics and prepares the

sampling frequencies. Afterward, the thread handler creates for each activated plug-in a

thread, which is responsible for sampling and publishing of the corresponding plug-in.

The application-level monitoring and user-defined metrics collection are both available

in the API folder in the Repository, where there is the source code of the user library

and several APIs for application code instrumentation. Some description for the

interfaces and their usage introduction are given in Section 5.4 and the full details on

the other components of the MF are provided in D4.2.

5.3 IMPLEMENTATION DETAILS

The PHANTOM MF-Library (application-level monitoring and user-defined metrics

collection) provides a user library and several APIs for instrumentation of the users‟ ap-

plications. The implemented code (in C) of the user library provides a set of functions

for running the Monitoring plugins developed for the MF-Client. In addition, those ca-

pabilities are extended with a set of functions for the collection of user defined metrics.

The source code of the MF-Library is available on the folder /api within the MF-Client

source code at the GitHub . In that folder there is instructions and an example of an in-

strumented application. The Figure 5-3 show the view of the GitHub webpage, which

publicly accessible at the link:

https://github.com/PHANTOM-Platform/Monitoring/tree/master/Monitoring_client/src/api

https://github.com/PHANTOM-Platform/Monitoring/tree/master/Monitoring_client/src/api

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 52 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Figure 5-3 Screenshot of the /api folder in the GitHub repository

The implementation of each plug-in is collected in the folder /plugins.

The pluggable design of MF-Client and the MF-Library allows a dynamic configuration

of their functionalities based on the users‟ configuration at run-time, but also easy its

extension in the future when new metrics and hardware are to be monitored.

For details of each plug-in‟s implementation see the Appendix “Monitoring Client’s

Plug-ins” in D4.3, which will be extended in D4.4 with the description FPGA-power

plug-in.

5.4 INTEGRATION ASPECTS

This section describes the required instrumentation of the user code in order to collect

the metrics requested in the Initial Set of Requirements.

5.4.1 Application-level APIs

The client interfaces detailed below were developed and included in the first prototype

release. In addition to collecting generic metrics of performance and power, the APIs

are capable of monitoring application-specific metrics as well.

As a point of reference, the code below shows the normal order of calling the user-

library functions. The code starts the monitoring of a set of metrics calling the function

mf_start, later collects some user defined metrics, and finally, it requests the end of

monitoring (mf_stop) and forward the remaining buffer of metrics (mf_send).

/*

Start monitoring of the predefined metrics for sub-components of an

application. Data are stored at first locally. Required input

parameters should include the MF server URL, the name of the

platform, where the application runs, and the metrics’ name and

sampling frequency.

*/

char *mf_start(char *server, char *platform_id, metrics *m);

/*

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 53

Confidentiality: Public Distribution

Send user-defined metrics with given metric’s name, value, and

current local timestamps to the PHANTOM MF server. Returns the

status of the operation completion.

*/

// thread_id is used to set independent buffer for each thread,

// set thread_id as 0 if there is only a single thread

int mf_user_metric(char *metric_name, char *value, int thread_id);

/* or integer value metric*/

(metric_query *) my_query=new_metric("user_metric" , int thread_id);

my_query=add_int_field(my_query, "", 1, (int []){20});

submit_metric(my_query);

/*or string value metric*/

(metric_query *) my_query=new_metric("user_metric" , int thread_id);

my_query=add_string_field(my_query, "", 1, (char *

[]){"newentry"});

submit_metric(my_query);

/*or JSON string metric*/

char *my_t = mycurrenttime_str();

sprintf(string_a,"\"user_metric\":{\"

loops\":12,\"user_timestamp\":%s}", my_t);

submit_metric_json(user_string, int thread_id);

/*

Stop monitoring of the predefined metrics when the sub-component is

finished.

*/

void mf_end(void);

/*

Send locally-stored predefined metrics to the PHANTOM MF server. The

unique generated execution ID will be returned on success.

*/

char *mf_send(char *server, char *application_id, char

*component_id);

For more complex and detailed examples, see Appendix 6. Examples of Registering

User Defined metrics.

5.5 INNOVATIONS BEYOND THE STATE-OF-THE-ART

The following major innovations are identified for the Monitoring Library:

 Management of monitoring configurations on heterogeneous systems. The

PHANTOM Monitoring Framework allows an administrator to register the

description of the hardware components of the compute nodes, as well as their

default configuration for monitoring. This task would normally be carried out only

when new nodes are added to the system or when the existing nodes are updated. In

this way, the use of the framework is eased to the end users, since it frees the users

of the configuration task as well as the necessary expertise to do it.

 Monitoring of user-defined metrics for the application-level monitoring.
Without the need of installing any additional monitoring tools, application (or user)

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 54 Version 1.0 4 September 2018

Confidentiality: Public Distribution

specific metrics can be monitored. For this purpose, the Monitoring Library offers

the users a set of light-weight, hardware-agnostic APIs for injecting the

instrumentation into the application code. This provides a tight integration of the

Monitoring Framework with the user application.

 Highly customizable monitoring settings. The PHANTOM Monitoring

Framework was designed with the user-friendliness in mind – the users can specify

the metrics to be automatically collected, the flush time interval, the configuration of

collected metrics, etc., independently for each application, which is not the case for

the other, alternative approaches.

This allows defining a more relaxed sampling frequency for monitoring at the

infrastructure level (when may not be an application running on the node), and a more

exhaustive frequency at the application level for those metrics that the user is interested

in. In particular, the user can define different sample rates for each plugin. In particular,

the sampling frequency can be modified during the execution of the application (by

modifying the configuration parameters).

5.5.1 Background technologies utilised in the development

Among a broad set of available open-source tools dealing with infrastructure monitoring

(e.g. Zabbix, Nagios), application-level optimization (e.g. Paraver, Vampir), we were

unable to identify any technology that would fulfill the user‟s requirement to the

Monitoring Library – i.e. allow the collection and centralised processing of the

application-specific data.

Therefore, the user‟s extensions of the Monitoring Framework – the Monitoring Library

– were largely developed from scratch (with the reuse of the design outcomes of the

EXCESS project [13]). The elaborated API syntax follows the one used in the well-

established tools for parallel applications profiling like Extrae [14] and Vampir-Trace

[15] and is tightly integrated with the Monitoring Client functionality (cf. D4.2).

5.5.2 Summary of new technologies/extensions developed

The PHANTOM Monitoring Library provides a way to monitor user-defined metrics to

analyze the changes in the collected metrics across multiple executions of their

application. Also for the MBT tools, the user-defined metrics can give important hints

on the properties that should be considered during modeling.

After the execution, users can perform analytics on their customized metrics in the same

way as they would do for any default metric, using the macro- or micro-querying

functionality of the Monitoring Server (see in D4.2).

The Monitoring Library also provides a very flexible way to configure all default

metrics that should be collected for the application by the Monitoring Client. For this

purpose, the function mf_start was extended to accept the list of plug-ins that need to be

activated for each specific application run.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 55

Confidentiality: Public Distribution

5.5.3 Source release and GIT repositories

The source code of PHANTOM Monitoring Framework is released via GitHub. The

source code of the MF-Library is available online with the source code of the

Monitoring Client because of both share source code and multiple libraries. The code

can be accessed via the following link:

https://github.com/PHANTOM-Platform/Monitoring/tree/master/Monitoring_client

https://github.com/PHANTOM-Platform/Monitoring/tree/master/Monitoring_client

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 56 Version 1.0 4 September 2018

Confidentiality: Public Distribution

6. CONCLUSION

This deliverable reports the final development of the tools and technologies that will

support the activities of three modules of PHANTOM in WP3. Those components are

Parallelization Toolset, Programming Interface, Model Based Testing and the

Monitoring Library
1
. For each module are identified:

 the requirements from the use cases that each module must fulfil and

preliminary feedback from M18.

 the design aspects and decisions taken during specification;

 the implementation details and technologies used in the implementation of those

tools;

 how the developed tools will communicate with the other PHANTOM modules;

 the summary of innovations and full prototype functionality.

Regarding to the development of the Parallelisation Toolset, 15 requirements were

identified from the use cases to be taken into consideration. Design of two

functionalities were discussed: Code Analysis, responsible for the identification of

parallelisable code inside components of a PHANTOM application; and Technique

Selection, responsible for the selection of the most appropriate component versions (e.g.

OpenMP, CUDA, FPGA etc.) that allows a more efficient implementation of the

deployment plan and injection of the API/annotations to each component‟s source code.

It is also described how components will be implemented to run on FPGA-coupled

devices, having identified the APIs and directives that need to be respected.

In the case of the Programming Interfaces, the use cases provided 12 requirements. To

meet these requirements, 3 groups of APIs were described: Shared API, to handle

shared memory; Queue API, allowing the usage of blocking FIFO data items on

distributed memories; and Signal API for coordinating the execution of components.

Due to the needs of the use cases, the Mutex protocol has also been developed,

providing code block mutual exclusion between the components. Moreover, an API for

specifying CPU-GPU communication was also described.

Model Based Testing (MBT) addresses 3 requirements from the use cases. Use cases

were studied in detail in order to allow the understanding of the technical challenges

that they provide to the execution of Model Based Testing methodologies. MBT

components have been developed in PHANTOM and the MBT workflow has been

achieved to deliver end-to-end model validation, performance estimation, functional

testing and non-functional testing for all three use case applications; MBT results have

been sent back to developers and the applications has been updated correspondingly

through iteration cycles between MBT and application development. The MBT

integration in PHANTOM was also defined and developed according to the integration

objectives. The innovation of MBT mainly relies on enabling early functional and non-

1
 The MF-Library API was integrated with the MF-Server under task 2.2 "Unified runtime monitoring implementation".

However, it is described in this deliverable with the purpose of having all the tools used for the instrumentation of the

applications in one place.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 57

Confidentiality: Public Distribution

functional testing, improving testing effectiveness and efficiency, and on the MBT

extension to component-based applications in parallel and embedded environments.

The requirements identified for Monitoring Library were 12 from the use cases, and 3

additional from the questionnaires filled by the Use Case Partners. The Monitoring

Library provides the run-time Monitoring Framework with capability to capture non-

functional properties and hardware quality attributes with regards to performance and

energy consumption aspects. The PHANTOM Monitoring Library abstracts users from

the metric collection process, allowing the focus on application optimization. The

library provides for the users the mechanism to select the metrics to be collected during

the execution of their applications at the system and application levels, as well as to

configure the frequency of sampling.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 58 Version 1.0 4 September 2018

Confidentiality: Public Distribution

REFERENCES

[1] ROSE Compiler, http://rosecompiler.org/

[2] autoPar, http://rosecompiler.org/ROSE_HTML_Reference/auto_par.html

[3] LLVM, https://llvm.org

[4] Clang compiler, http://clang.llvm.org

[5] Vivado High-Level Synthesis, https://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html

[6] Q. Yi, V. Adve, and K. Kennedy. Transforming loops to recursion for multi-level

memory hierarchies. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, Vancouver, British Columbia, Canada, June 2000.

[7] Kramer, A., Legeard, B.: Model-based testing essentials: guide to the ISTQB

certified model-based tester foundation level. John Wiley & Sons Inc, Hoboken,

New Jersey (2016)

[8] Thomas A. Henzinger and Joseph Sifakis. 2006. The embedded systems design

challenge. In Proceedings of the 14th international conference on Formal Methods

(FM'06), Jayadev Misra, Tobias Nipkow, and Emil Sekerinski (Eds.). Springer-

Verlag, Berlin, Heidelberg, 1-15. DOI=http://dx.doi.org/10.1007/11813040_1

[9] Model-Based Testing: An Approach with SDL/RTDS and DIVERSITY

[10] Eclipse Formal Modelling Project,

https://projects.eclipse.org/projects/modeling.efm

[11] Moscato, F., Mazzocca, N., Vittorini, V., Di Lorenzo, G., Mosca, P., and Magaldi,

M. Workflow pattern analysis in web services orchestration: the BPEL4WS

example. Proceedings of the First international conference on High Performance

Computing and Communications, Springer-Verlag (2005), 395–400.

[12] TTCN-3, http://www.ttcn-3.org/

[13] EXCESS, http://www.excess-project.eu/

[14] Extrae, https://tools.bsc.es/extrae

[15] VAMPIRTRACE, https://tu-dresden.de/zih/forschung/projekte/vampirtrace

[16] Palabos, http://www.palabos.org/

http://rosecompiler.org/ROSE_HTML_Reference/auto_par.html
https://llvm.org/
http://clang.llvm.org/
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://projects.eclipse.org/projects/modeling.efm
http://www.ttcn-3.org/
http://www.excess-project.eu/
https://tools.bsc.es/extrae
https://tu-dresden.de/zih/forschung/projekte/vampirtrace
http://www.palabos.org/

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 59

Confidentiality: Public Distribution

Appendix 1. INITIAL REQUIREMENTS OF PARALLELIZATION TOOLSET

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U3

Parallelization of sequential application code,

when complemented by parallelization in-

structions provided by the user

SHALL YES

U4
Automatic identification and parallelization of

regions of sequential application code
SHOULD YES

Parallelization of sequential code is performed by Code Analysis that identifies the

parallelizable regions in the code and inserts the necessary OpenMP annotations that

allows the application to use multiple treads for its execution. User instructions are

enabled by the PHANTOM Programming Model to enhance the tool‟s understanding of

the code, improving the analysis and producing better results.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U5
Support for multi-threaded concurrent tasks,

including communication and synchronization
SHALL YES

The tool parallelizes each component using the OpenMP library enabling its multi-

threaded capabilities. The components‟ execution is also implemented as a set of multi-

threaded tasks that are running concurrently and exchange data using communication

standards like POSIX and MPI.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U6
Support of parallelization, influenced by non-

functional requirements information
SHOULD YES

Parallelization Toolset creates more applicable versions of the parallelized components

to provide the necessary flexibility to the Multi-Objective Mapper that is responsible to

provide an optimized mapping for the satisfaction of non-functional requirements.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U7

Support for communications data-centric ap-

plications (e.g. automatic scaling of compo-

nents to the actual size of data to be processed)

SHALL YES

A suitable interface (as discussed in the following paragraphs) is provided for the

support of data-centric applications, managing, if necessary, different scales of the data

or even slicing them into smaller components according to the application‟s

specifications.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U8
Support for component-based application de-

sign
SHALL YES

The Parallelization Toolset uses the Component Network provided by the user to

assume a collection of components interacting with each other while running in parallel.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 60 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U14
Exploitation of SIMD instructions sets pro-

vided by CPUs
SHOULD YES

SIMD exploitation is supported by the insertion of specific OpenMP annotations (e.g.

reduction) that use the CPU‟s extended capabilities for optimized execution. The

annotations are injected in the code during the generation of the OpenMP versions of

the components as described in the following paragraphs.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U19

Generation of target dependent parallel code

for all mandatory target platforms without

user involvement when sufficient annotations

are provided.

SHOULD YES

The Parallelization Toolset provides support for CPU, GPU and FPGA deployment. The

tool successfully transforms the code in order to provide the necessary interface to

external devices and provide those versions alongside the ones transformed to run in

parallel on CPU-only, multithreaded systems.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U21

Automation of transferring data to/from dif-

ferent memories according to the component

data model

SHALL YES

This functionality is currently assigned to the Deployment Manager and the

PHANTOM Programming Interface who work in synergy with the PT and are

responsible to implement any data transfers between the components optimally.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U22
Support for indication of application blocks to

be parallelized
SHALL YES

The Programming Model enables the user to indicate specific regions of code that don‟t

face certain dependencies, assessing the Parallelization Toolset to exclude those

dependencies from its analysis unlocking in this way more parallelization capabilities

for the component.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U23

Support for indication of data dependencies,

defining how data can be partitioned/split

among the parallel application components

SHALL YES

Component replication is supported by the Parallelization Toolset allowing the user to

include the necessary annotations in their code to indicate the components that are able

to be replicated, splitting the data to each copy of the component.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 61

Confidentiality: Public Distribution

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U32
Support for application source code developed

in C
SHALL YES

U33
Support for higher level language such as Java

and C++
MAY YES

The Parallelization Toolset provides support for a lower level programming language

such as C, as well as a higher level language such as C++, giving the user a basic

flexibility on the level of usage they want to apply on the framework.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U37
Support for exposing the generated parallel

code to the user
SHALL YES

The parallel code generated by the PT is being exposed to the user through a well-

viewed panel provided by the tool‟s GUI. All the modified versions as well as the

IPCores generated by IPCore generator are stored in the Repository and can be accessed

by the user.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U38

User modifications of the generated parallel

code subject to restrictions or protected seg-

ments

SHOULD NO

During development no such requirement was needed to be implemented based on the

use cases applications, hence it was considered unnecessary.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 62 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Appendix 2. INITIAL REQUIREMENTS OF PROGRAMMING INTERFACE

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U5
Support for multi-threaded concurrent tasks,

including communication and synchronization
SHALL YES

Suitable APIs (Programming Interface) are provided to support both communication

and synchronization between concurrent tasks.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U7

Support for communications data-centric ap-

plications (e.g. automatic scaling of compo-

nents to the actual size of data to be pro-

cessed)

SHALL YES

A suitable interface (as discussed in the following paragraphs) is provided for the

support of data-centric applications, managing, if necessary, different scales of the data

or even slicing them into smaller components according to the application‟s

specifications.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U8
Support for component-based application de-

sign
SHALL YES

The implementation of the Programming Interface is designed to guarantee sufficient

communication and synchronization between different components that constitute a

whole application.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U19

Generation of target dependent parallel code

for all mandatory target platforms without

user involvement when sufficient annotations

are provided.

SHALL YES

OpenMP annotations are added by the PT in the sequential code transforming it into

multithreaded code for CPU targets. Regarding GPU and FPGA targets, an API for

GPUs is supported providing the necessary interface for executing code on the

corresponding targets, while the IP Core Generator module is responsible to provide

auto-generated IP Cores for execution on FPGAs.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U20

Provision of constructs or abstractions to deal

with non-uniform and uniform memory, hid-

ing the underlying data transfer details

SHALL YES

U21

Automation of the process of transferring data

to/from different memories according to the

component data model

SHALL YES

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 63

Confidentiality: Public Distribution

The Programming Interface, with the help of the component network, provides

communication between the different components by hiding at the same time the details

of the implementation concerning any type of memory transfers.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U24

Provision of means for the developer to de-

scribe the composition of hardware compo-

nents and interactions for the target platform

SHALL YES

U28
Provision of a data model for specification of

input and output data
SHALL YES

The component network as well as the platform description are designed to allow the

user to provide specifications about data transfers and the hardware components that are

available.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U32
Support for application source code developed

in C
SHALL YES

U33
Support for higher level language such as Java

and C++
MAY YES

The Programming Interface provides support for a lower level programming language

such as C, as well as a higher level language such as C++ giving the user a basic

flexibility on the level of usage they want to apply on the framework.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U47

Support for Telecom specific application clas-

ses where domain-specific libraries are com-

monly utilized

SHALL YES

No constraint is defined in the Programming Model that can exclude domain-specific

libraries. Any such library is supported by PHANTOM as long as it is included by the

user in the code.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U86
Support for application specific communica-

tion bus/protocols
MAY YES

The Programming Model can be used side by side with the default C/C++ environment,

which means that any external communication protocol/library can be used

independently to the PHANTOM protocols.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 64 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Appendix 3. INITIAL REQUIREMENTS OF MODEL BASED TESTING

The initial use case requirements that MBT addresses in PHANTOM project is

introduced in the table below.

Req.

No.
Requirement

Overall

Priority

Fulfilled
(yes,

partial, no)

U29

PHANTOM should provide a means to test the correct

functioning of the application when it is mapped onto

heterogeneous HW targets

SHOULD YES

U30
PHANTOM should provide mechanism to test the correct

APIs implementation
SHOULD

YES

U31
PHANTOM should provide an API for implementation of

tests (similar to JUnit for Java)
SHOULD

YES

The four MBT activities in two phases ensure the correct functioning of applications

(U29) and APIs (U30), but also provide testing results for application performance to

check if the non-functional requirements are met. The API for test implementation

(U31) consists of two parts: 1) the API for model validation, functional and non-

functional testing is based on xLIA language (eXecutable Language for Interaction &

Assemblage) [9]. Users can create their own MBT models for validation and test

generation, and the generated test cases can be executed by use of the developed MBT

components; 2) The API for performance estimation is the same as PHANTOM

component network. Users can create their own application component networks and

run the performance estimation to get estimation results.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 65

Confidentiality: Public Distribution

Appendix 4. TESTING REQUIREMENTS OF USE CASES

In addition to the general requirements on PHANTOM platform, specific use case

requirements related testing are also identified by each use case in terms of specification

documents. The specifications describe the expected functions and performance of each

use case, which are served as the basis for testing activities. Each of the three use cases

has identified several functional aspects (input, output, precondition and post condition)

to test for the entire application as well as their components. The latest specifications

are briefly introduced as follows.

Surveillance specification

GMV develops and markets a surveillance system to provide added-value support to

maritime situational awareness via Earth Observation technologies. It is a fully

automatic and modular tool that permits detecting and categorising ships by combining

the information inferred from Synthetic Aperture Radar data with transponder-based

polls (such as the Automatic Identification System). The information from these

different sources is integrated and provided, as a service, through an advanced

GeoPortal web interface.

The updated surveillance application defined using PHANTOM programming model is

named Ship Detection and has a number of components as illustrated in Figure A- 1; the

way how components are composed is also illustrated in the same figure. The functional

specification of each component is summarized in Table A- 1.

Figure A- 1 Surveillance use case components

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 66 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Table A- 1 Functional specification of Surveillance Use Case

Application/

Component

Inputs Outputs

ShipDetection - block_id

- imageBlock

- imageBounds

- coastlineSections

- Att: extracted metadata from image

- miscellaneous

- shipReport

morph_dilate - block_id, mat and mask -dilated

DetectSpots - block_id

- coastlineSections

- image, maskLand, misc

- SpotsT

- SpotsD

dwt2 - block_id

- sig, nm, J

- ca: approximation coefficients matrix

- ch: horizontal coefficients matrix

- cv: vertical coefficients matrix

- cd: diagonal coefficients matrix

idwt2 - block_id

- isg, nm, J

- dwt_inv: approx. and coefficients

matrix

MaxLocal2D - block_id

- image_ship, max_spots, type

- values: local maximum

- row_ind: Row indexes

- column_ind: Column indexes

MaxLocal - block_id

- input_data

- dim: matrix dimension to compute

- max_ind: array of the max indices

ClusterSpots

- block_id

- ShipReportPre, image, spots

- valuesPre

- LoopIndex: index for storage decisions

- detection: constant configuration

- SpotsTemp: clustering for input spots

ComputeConfidence - block_id

- spots, shipReport, image, detection

- imageBounds, misc, maskLand

- shipReport

OrderSpots - block_id

- spots, shipReport, shipReportPre

- valuesPre, LoopIndex, soptsTemp

- valuesClust

- spots

- shipReport

UpdateShipReport - block_id

- shipReport, att, misc

- shipReportGlobal

- indReport

Besides the functional aspect, the non-functional requirements for surveillance requires

that the execution time of application should be less than 1600 seconds.

Telecom specification

Intecs develops a system for Automatic Transmission Power Control (ATPC). ATPC

refers to a functionality supported by the high frequency radio circuits (rf) that allows to

control the power of the transmitted signal based on the received signal level on the

remote end antenna exchange via radio embedded ATPC protocol.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 67

Confidentiality: Public Distribution

The ATPC application architecture is decomposed in a set of “atomic” components each

one activated at regular and specific time interval (polling time). Each component runs

autonomously on the base of the information from hardware or from shared areas as

illustrated in Figure A- 2.

set tx power
tx power

monitoring
rsl control

temperature

monitoring

demodulator

alarm
ber alarm

atpc

algorithm

Shared Data Area

each

1ms
each

100ms

each

20ms

each

100ms
each

100ms

each

1ms

each

10ms

Figure A- 2 Telecom Use Case Architecture

Table A- 2 identifies each component, the polling interval and provides a brief

description of its activity, highlighting the relevant input, output data (additional shared

data are detailed in the test cases, e.g. used for compensation, alarms, etc.) and alarms.

Table A- 2 Functional specification of Telecom Use Case

Component Poll (ms) Input Output Alarms

set tx power 1 txpwr_dac_val DAC(1)

tx power monitoring 100 ADC(3) detected_tx_pwr SQUELCH

TX_PWR

received signal level control 20 ADC(0) DAC(0)

ATPC_TX_REG

ATPC_TX_EN

RX_PWR

temperature monitoring 100 INT_TEMP TEMP

demodulator alarm 100 MODEM_CPM_BER DEM

ber alarm 1 MODEM_CPM_BER microinter_CNT

atpc algorithm 10 ATPC_RX_READY

ATPC_RX_REG

txpwr_dac_val ATPC_LOOP

RX_REM_PWR

During the execution, the two following non-functional constraints apply a) polling time

precision of each component <= 10%, b) worst case response time (WCRT) per

component <= 50% of polling time.

HPC specification

HLRS develops a platform for dynamic simulation of complex physical processes in

industrial technological objects. The dynamic PHANTOM platform will take as input

the real live data streams that can be obtained from the sensors, deployed in the

technological objects as parts of their automated control system. Leveraging the real-

time capabilities of the PHANTOM development framework along with the complex

models provided by the experts of the targeted domain, the dynamic simulation platform

development will result in a unique solution that is not yet available on the market.

The core of the PHANTOM simulation study is Computation Fluid Dynamics (CFD)

by the open-source CFD simulation package Palabos [16]. Palabos implements Lattice-

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 68 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Boltzmann CFD method to simulate the propagation of the fluid through the geometry

of any object in a closed domain, which simulates the air dynamic channel. On the

HLRS project partner‟s infrastructure, Palabos is used by its industrial customers (such

as Porsche) to analyse the geometry of the newly-designed cars.

Figure A- 3 illustrates all components of HPC application and the dependencies.

Figure A- 3 HPC application components and dependencies

The application consists of a set of PHANTOM programs, each implementing the

following simulation pipeline:

1. Loading the input parameter set, consisting of:

 Geometry parameters

 Numerical parameters

o Kinematic viscosity

o Inlet velocity

o Grid resolution

o …

 Output parameters

o Maximum simulation time

o Frequency of the statistic output

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 69

Confidentiality: Public Distribution

o Type of output files (2-D, 3-D, …)

2. Performing the simulation

3. Generation of the output files

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 70 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Appendix 5. REQUIREMENTS OF MONITORING LIBRARY

In the following, we describe the initial requirements (indexed as Uxx), and the new

requirements detected from the questionnaires filled by the use case partners (indexed

as Nxx).

Heterogeneous target platform (U73)

The PHANTOM Monitoring Framework should support all mandatory target platforms

of the users‟ interest. To be specific, the PHANTOM infrastructure should be

heterogeneous, including multi-core CPUs, GPUs, FPGAs, and the targeted embedded

systems (e.g. Movidius). Subject to the hardware facilities and availabilities, sometimes

a hosting hardware is required in order to monitor the connected accelerator. For

instance, collecting the run-time metrics of a GPU is done by the Monitoring

Framework deployed on the associated hosting CPU. The reconfigurable (FPGA) and

hybrid (CPU+FPGA) device monitoring should happen via industry-standard FPGA

Mezzanine Connectors (FMC), e.g. Xilinx Zynq platform.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U73

The run-time monitor shall be capable of ac-

quiring monitoring data in all mandatory tar-

get platforms (e.g. CPU, FPGA, etc.) subject

to available hardware capabilities

SHALL YES

Metrics (U26, U72, U74-78, U83)

Generally, the PHANTOM run-time monitoring should support metrics covering both

hardware (infrastructure-level) and software (application-level) properties. Some

metrics are predefined, like the execution time, memory properties, power consumption,

communication bandwidth, and I/O usage, while the others are application-specific

metrics, which are user-defined and application-distinctive. Some examples of the user-

defined metrics are the number of the processed frames for the surveillance use case or

the number of the numerical integration steps for the HPC application. These predefined

metrics are also different based on different hardware and sensors availabilities.

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U26
PHANTOM shall provide an API for moni-

toring of user-defined metrics
SHALL YES

U72

The PHANTOM run-time monitor shall be

able to monitor non-functional properties of

an application

SHALL YES

U74
The PHANTOM framework should be capa-

ble of monitoring execution time properties
SHOULD YES

U75
The PHANTOM framework should be capa-

ble of monitoring memory properties
SHOULD YES

U76

The PHANTOM framework should be capa-

ble of monitoring power consumption proper-

ties

SHOULD YES

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 71

Confidentiality: Public Distribution

Req. No. Requirement
Overall

Priority
Fulfilled

(yes, partial, no)

U77

The PHANTOM framework should be capa-

ble of monitoring communications bandwidth

properties

SHOULD YES

U78
The PHANTOM framework should be capa-

ble of monitoring I/O properties
SHOULD YES

U83
PHANTOM should provide monitoring of

application-specific performance metrics
SHOULD YES

Accessibility (U35, U79, U80-U82)

The run-time monitoring accessibility requirements are mainly the following:

 Data obtained by the run-time Monitoring Framework shall be accessible to the

users by some means based on the users‟ interest.

 Data obtained by the users should be structured in a standard format, which enables

further integration requirements.

 Users should be able to control the metrics sampling frequency and to select which

metrics are to be monitored.

 Data storage and historical metrics analysis shall also be provided in the Monitoring

Framework.

Req.

No.
Requirement

Overall

Priority
Fulfilled

(yes, partial, no)

U35

The PHANTOM framework shall be capable of

interfacing with local target platforms (deploying

the application, monitoring the execution and the

state of the target platform resources).

SHALL YES

U80

The user shall be able to have fine-grained con-

trol over execution time monitoring by indicating

application sub-components (i.e. tasks, loop,

code blocks) whose execution time shall be mon-

itored

SHALL YES

U82

For non-periodic non-functional properties, the

user should be able to select the frequency of

data acquisition

SHOULD YES

Requirements on the questionnaires filled by the Use Case Partners (D1.3)

After the initial round of development, Use Case partners were queried on the tools and

further requirements generated. These are discussed here.

 Req.

No.
Requirement

Overall

Priority

Fulfilled
(yes, partial,

no)

N1 HPC use case might need to submit more complex

structure to the MF than tuples (e.g. triples), e.g. the
SHOULD YES

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 72 Version 1.0 4 September 2018

Confidentiality: Public Distribution

 Req.

No.
Requirement

Overall

Priority

Fulfilled
(yes, partial,

no)
local timestamp of the events.

N2

The integration of the MF in the Surveillance UC

was not a straightforward process. In fact, the MF

assumes that all the threads in an application are

explicitly terminated, and relies on that fact to

collect the default and the user-defined metrics.

However, in the Surveillance UC, the devised

architecture of the application includes some threads

that are not terminated explicitly, instead, they

terminate when the main program exits. As a

consequence, the MF did not work properly at the

first attempt to incorporate it into the UC; a

workaround was devised and implemented, but it

may not be the most elegant solution nor respect the

original architecture of both the MF and the

Surveillance UC.

SHOULD YES

N3

Possibility to manage user-defined metrics without

integrating the MF-client if no infrastructure metrics

are required.
SHOULD YES

Fulfillment of N1:

The requirement is solved by providing two alternative ways to the Library for

registering user metrics. The new additional functions are more flexible than the

available function in the Library when it was evaluated by the use cases in D1.3. The

initial function allowed to define single-valued user metrics, which were composed of a

label and a value like “user_metric_label”:20.5 or

“user_metric_label”:”hello”.

The first alternative is based on the user build their own JSON data structure and submit

it with the function “submit_metric_json(char * string);”, where the

user is responsible for the correct syntax of the JSON string.

The user can define a string such as:

user_string  "user_metric":{"number-of-loops":122, "us-

er_timestamp":32758512}

and submit it as:

submit_metric_json (user_string);

The second alternative is based on providing a set of functions to build the JSON string

from the user variables. These functions provide the capability of defining multiple

fields, which can be also multivalued. The library provide new calls such generation of

a new user metric “(user_metric *) pointer = new_metric(label);”

and add fields and values to it with the calls “add_int_field(pointer,

”label”, size, array_of_ints);”,

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 73

Confidentiality: Public Distribution

“add_string_field(pointer,”label”, size,array_of_strings);”

and “add_time_field (pointer, ”label”, time_stamp);”

Additionally, to the fields defined by the user, it is automatically registered the local

timestamp when is created every single user-metric.

As an example of the capabilities and the flexibility of the new version, we can see the

following metrics that can be generated:

“user_metric_label”: [20,30,

40]

“user_metric_label” : {

 “label_a”: [30,40],

 “label_b”: “hello”,

 “label_c”: [“one”, “two”],

 “my_time”:”2018-06-

28T08:27:10.851”

}

Example of the instrumentation to register metrics like in the example appear in

Appendix 6.

Fulfillment of N2:

The structure of the GMV use case caused issues with the initial version of the

framework. An approach to solve this was developed and is explained in Appendix 7.

The initial design of the MF Library collects the metrics locally and submit them at the

end of the execution of the application. However, the requirement N2 requests to

periodically submit buffered metrics because their running threads keep running for a

long time. Therefore, the submission of buffered monitored metrics is supported, which

can be automated with a fixed frequency in the variable “transfer_interval”
2
. This

additional parameter will be defined with the other initial metric parameters. As an

example:

int main() {

 /* MONITORING METRICS */

metrics m_resources;

m_resources.num_metrics = 3;

m_resources.local_data_storage = 1; //remove the file if user

unset keep_local_data_flag

m_resources.sampling_interval[0] = 10; // 1000 stands for 1s

m_resources.transfer_interval[0] = 600; // 1min

strcpy(m_resources.metrics_names[0], "resources_usage");

m_resources.sampling_interval[1] = 10; // 1s

2
 Assigning a value of zero the transfer_interval parameter produces that the metrics be sent as described in the previ-

ous deliverables, that is, when finished the execution of the application. The impact of doing or not periodic transfers of

data will be different depending on the application. Notice that value of this parameter defines the required buffer size,

and the available space for the buffer is limited by the available storing space. Therefore, the transfer_interval value

must smaller than the value that requires filling such available space for buffering.

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 74 Version 1.0 4 September 2018

Confidentiality: Public Distribution

m_resources.transfer_interval[1] = 600; // 1min

strcpy(m_resources.metrics_names[1], "disk_io");

m_resources.sampling_interval[2] = 10; // 1s

m_resources.transfer_interval[2] = 600; // 1min

strcpy(m_resources.metrics_names[2], "power");

/* MONITORING START */

const char server[]="localhost:3033";

const char regplatformid[]="node01";

mf_start(server, regplatformid, &m_resources);

....

mf_end();

/* MONITORING SEND */

const char appid[]="demo11114";

const char execfile[]="hello_world";

mf_send(server, appid, execfile, regplatformid);

}

User-defined metrics are forward to the server when the user calls the function

mf_send, typically when the application finishes. However, to solve the requirement

D1.3-L2 an additional function is defined which allows sending each thread buffer to the

server:

mf_usermetrics_send(server, appid, execfile, regplatformid,

thread_id)

The function requires the thread_id in order to identify the buffer to be sent and not

interfere with the buffers being used by the other threads.

Fulfillment of N3:

Stopping the MF-Client and providing a configuration which does not request the use of

any plugin will allow collecting only user-defined metrics, and this satisfies the

requirements of the particular evaluation scenario for the resource-constrained devices of

the Intecs use case.

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 75

Confidentiality: Public Distribution

Appendix 6. EXAMPLES OF REGISTERING USER DEFINED METRICS

The experience with the integration of the tools and the use case partners motivated the

development of two alternative ways of generating the user metrics in JSON format.

Next, both sets are illustrated with some examples.

First Set of Functions:

This set of functions allow the users the freedom to provide the metrics in JSON format

according to their needs, which requires that users construct the JSON metrics without

syntactic errors. One user defined JSON metric is presented below.

char user_string[256];//enough big to store the JSON

char *my_t = mycurrenttime_str();

sprintf(string_a,"\"user_metric\":{\" loops\":12,\"user_timestamp\":

%s}", my_t);

submit_metric_json(user_string);

sprintf(string_a,"\"user_metric\":{\"co2\":8.24,\"user_timestamp\":%

s}", my_t);

submit_metric_json(user_string);

JSON strings submitted:

"user_metric":{"loops":12,"user_timestamp":327586205}

"user_metric":{"co2":8.24,"user_timestamp":327586205}

Notice that the function mycurrenttime_str provides the timestamp the absolute elapsed

wall-clock time since some arbitrary fixed point in the past. It isn't affected by changes

in the system time-of-day clock. This is best option when we want to register the

elapsed time between two events observed on the one machine without an intervening

reboot.

That timestamp is not a REALTIME timestamp because in such case it will be the

machine's best-guess as to the current wall-clock, time-of-day time. Which can jump

forwards and backwards as the system time-of-day clock is changed, including by NTP.

Which is completely undesirable.

Second Set of Functions:

This second set is easier to use for those users that are not experts on the JSON syntax,

so it is less prone to generate metrics with errors.

Below appear different examples of the instrumentation of the user-defined metrics,

from single valued metric, Multivalued metric, Multiple fields metric and Multiple

fields metric with a user-defined timestamp

Output Code

“user_metric”: 20

metric_query *) *my_metric;

mymetric= new_metric(“user_metric”,0);

int array_int[]={20};

my_metric= add_int_field(&my_metric, “”, 1,

array_int);

submit_metric(my_metric);

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 76 Version 1.0 4 September 2018

Confidentiality: Public Distribution

Output Code

“user_metric”:

[20, 30, 40]

metric_query *) *my_metric;

mymetric= new_metric(“user_metric”,0);

int array_int[]={20,30,40};

my_metric= add_int_field(&my_metric, “”, 3,

array_int);

submit_metric(my_metric);

Output Code

“user_metric” : {

 “alfa”: [30,40],

 “beta”: “hello”

 }

(metric_query *) *my_metric;

my_metric= new_metric(“user_metric”,0);

int array_b[]={30,40};

my_metric =add_int_field(&my_metric, “beta”,

2, array_b);

char array_c[1][10];

strcpy(array_c[0], “hello”);

my_metric = add_string_field(&my_metric,

“beta”, 1, array_c);

submit_metric(my_metric);

Output Code

“user_metric” : {

 “alfa”: 20,

 “beta”: [30, 40

],

 “time_stamp”:

 “2018-06-

28T08:27:10.851”

}

(metric_query *)

my_metric=new_metric(“user_metric”,0);

int array_a[]={20};

my_metric =add_int_field(new_metric, “alfa”,

1, array_a);

int array_b[]={30,40};

my_metric =add_int_field(new_metric, “beta”,

2, array_b);

struct timespec mytime;

clock_gettime(CLOCK_REALTIME, & mytime);

double timestamp_ms = mytime.tv_sec * 1000.0 +

mytime.tv_nsec / 1.0e6;

my_metric = add_time_field(new_metric,

“time_stamp”, timestamp_ms);

submit_metric(new_metric);

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 77

Confidentiality: Public Distribution

Appendix 7. EXAMPLE OF MONITORING A MULTITHREAD APPLICATION

The purpose of this example is to facilitate the integration of the applications with the

monitoring environment to those new users without experience. Therefore, this example

aims to reduce the time cost of the user for said task.

#include <stdio.h>

#include <string.h>

#include <pthread.h>

#include <stdlib.h>

#include <unistd.h>

#include <stdio.h>

#include <math.h>

#include "mf_api.h"

pthread_t tid[2];

#define PI 3.14159265

const char server[]="localhost:3033";

char currentid[100]; // common UNIQUE id for register in the MF all

the threads-metrics in this execution.

void start_monitoring(const char *server, const char

*regplatformid){

/* MONITORING METRICS */

 metrics m_resources;

 m_resources.num_metrics = 3;

 m_resources.local_data_storage = 1; /*remove the file if user

unset keep_local_data_flag */

 m_resources.sampling_interval[0] = 10; // 1000 stands for 1s,

unit in ms

 strcpy(m_resources.metrics_names[0], "resources_usage");

 m_resources.sampling_interval[1] = 10; // unit in ms

 strcpy(m_resources.metrics_names[1], "disk_io");

 m_resources.sampling_interval[2] = 10; // unit in ms

 strcpy(m_resources.metrics_names[2], "power");

/* MONITORING START */

 mf_start(server, regplatformid, &m_resources);

}

void* doSomeThing(void *args){

 unsigned int i, j, angle=0, n =720;

 struct Thread_report *my_thread_report;

 pthread_t id = pthread_self();

 char component_name[100], temp_i[100], mytime[100];

 my_thread_report = (struct Thread_report *)args;

 my_thread_report->start_time=mycurrenttime();

 my_thread_report->total_metrics= 3;

 my_thread_report->user_label = (char **) malloc(n *

sizeof(char*));

 my_thread_report->user_value = (char **) malloc(n *

sizeof(char*));

 my_thread_report->metric_time = (char **) malloc(n *

sizeof(char*));

 for (i=0;i<my_thread_report->total_metrics;i++){

 my_thread_report->user_label[i] = (char *) malloc(40 *

sizeof(char));

 my_thread_report->user_value[i] = (char *) malloc(40 *

sizeof(char));

D3.2 – Final report on programmer- and productivity-oriented software tools

Page 78 Version 1.0 4 September 2018

Confidentiality: Public Distribution

 my_thread_report->metric_time[i] = (char *) malloc(40 *

sizeof(char));

 }

 for (i=0;i<n;i++){

 llint_to_string_alloc(mycurrenttime(),mytime);// <<-- TIME

 strcat(mytime, ".0");

 angle=(angle+1) % 360;

 for (j=0;j<my_thread_report->total_metrics;j++)

 strcpy(my_thread_report->metric_time[j], mytime); // <<--

TIME

 itoa(i,temp_i);

 if(pthread_equal(id,tid[0])) {

 strcpy(component_name, "first_thread ... ");

 strcpy(my_thread_report->user_label[0], "n_ships_found");

// <<-- LABEL

 itoa((int) 10*i+5, my_thread_report->user_value[0]);

// <<-- VALUE

 strcpy(my_thread_report->user_label[2], "sim-

ple_function_comp_a"); // <<-- LABEL

 ftoa((float) (40.0+20.0*cosf(((float) angle)* PI / 180.0)),

my_thread_report->user_value[2],3);

 } else {

 strcpy(component_name, "second_thread ... ");

 strcpy(my_thread_report->user_label[0], "num-

ber_of_blocks"); // <<-- LABEL

 itoa((int) 20*i+8, my_thread_report->user_value[0]);

// <<-- VALUE

 strcpy(my_thread_report->user_label[2], "sim-

ple_function_comp_b"); // <<-- LABEL

 ftoa((float) (40.0+20.0*sinf(((float) angle)* PI / 180.0)),

my_thread_report->user_value[2],3);

 }

 strcat(component_name, temp_i);

 printf("\n Processing thread named as: %s\n",component_name);

 strcpy(my_thread_report->user_label[1], "counter"); // <<--

LABEL

 itoa((int) i, my_thread_report->user_value[1]); // <<--

VALUE

 user_metrics_buffer(currentid,*my_thread_report);

 usleep(10000); /* sleep unit is on us */

 }

 printf("\n Finishing thread named as: %s\n",component_name);

 fflush(stdout);

 my_thread_report->end_time=mycurrenttime();

 return NULL;

}

int main(int argc, char* argv[]) {

 const int amount_of_threads = 2; //we have 2 threads in this

example

 /********************MONITORNG START ************************/

 struct Thread_report all_thread_reports[2];

 char regplatformid[]="node01";

 char appid[]="demo";

 char execfile[]="pthread-example";

 start_monitoring(server, regplatformid);

 strcpy(all_thread_reports[0].taskid,"component_a");

 D3.2 – Final report on programmer- and productivity-oriented software tools

4 September 2018 Version 1.0 Page 79

Confidentiality: Public Distribution

 strcpy(all_thread_reports[1].taskid,"component_b");

 for(int i=0;i<amount_of_threads;i++)

 all_thread_reports[i].total_metrics=0;

 if(argc>1)

 strcpy(currentid,argv[1]);

 else

 strcpy(currentid,"missingid");

 /**/

 for(int i=0;i<amount_of_threads;i++){

 int err = pthread_create(&(tid[i]), NULL, &doSomeThing, (void

*) (&all_thread_reports[i]));

 if (err != 0)

 printf("\n Can't create thread :[%s]", strerror(err));

 else

 printf("\n Thread created successfully\n");

 }

 for(int i=0;i<amount_of_threads;i++)

 (void) pthread_join(tid[i], NULL);

 printf("\n Finishing program\n");

 /************* MONITORING END *******************************/

 register_workflow(server, regplatformid, appid, execfile);

 for(int i=0;i<amount_of_threads;i++)

 register_end_component(currentid,

all_thread_reports[i]);

 monitoring_send(server, appid, execfile, regplatformid);

 mf_end();

 for(int i=0;i<amount_of_threads;i++){

 printf(" Execution label of the workflow: \"%s\"\n", cur-

rentid);

 printf(" THREAD num %i, name : %s\n",i,

all_thread_reports[i].taskid);

 printf(" total metrics

%i:\n",all_thread_reports[i].total_metrics);

 for(int j=0;j<all_thread_reports[i].total_metrics;j++)

 printf("%s:%s\n", all_thread_reports[i].user_label[0],

all_thread_reports[i].user_value[0]);

 printf(" Start time: %llu ns\n",

all_thread_reports[i].start_time);

 printf(" End time : %llu ns\n\n",

all_thread_reports[i].end_time);

 }

 /**/

 for (int i=0;i<amount_of_threads;i++){

 for (int j=0;j<all_thread_reports[i].total_metrics;j++){

 free(all_thread_reports[i].user_label[j]);

 free(all_thread_reports[i].user_value[j]);

 free(all_thread_reports[i].metric_time[j]);

 }

 free(all_thread_reports[i].user_label);

 free(all_thread_reports[i].user_value);

 free(all_thread_reports[i].metric_time);

 }

 return 0;

}

Source code available at:

https://github.com/PHANTOM-Platform/Monitoring/tree/master/example-monitoring-

app-with-pthreads

https://github.com/PHANTOM-Platform/Monitoring/tree/master/example-monitoring-app-with-pthreads
https://github.com/PHANTOM-Platform/Monitoring/tree/master/example-monitoring-app-with-pthreads

