

Project Partners: Easy Global Market, GMV, Intecs, The Open Group, University of Stuttgart,
 University of York, Unparallel Innovation, WINGS ICT Solutions

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

PHANTOM Project Partners accept no liability for any error or omission in the same.

© 2017 Copyright in this document remains vested in the PHANTOM Project Partners.

Project Number 688146

D3.1 ï First report on programmer- and productivity-
oriented software tools

Version 2.0

2 November 2017

Final

Public Distribution

Unparallel Innovation, Wings ICT Solutions, Easy Global
Market, University of Stuttgart

D3.1 ï First report on programmer- and productivity-oriented software tools

Page ii Version 2.0 2 November 2017

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Easy Global Market

Philippe Cousin

2000 Route des Lucioles

Les Algorithmes Batiment A

06901 Sophia Antipolis

France

Tel: +33 6804 79513

E-mail: philippe.cousin@eglobalmark.com

GMV
José Neves

Av. D. João II, Nº 43

Torre Fernão de Magalhães, 7º

1998 - 025 Lisbon

Portugal

Tel. +351 21 382 93 66

E-mail: jose.neves@gmv.com

Intecs

Silvia Mazzini

Via Umberto Forti 5

Loc. Montacchiello

56121 Pisa

Italy

Phone: +39 050 9657 513

E-mail: silvia.mazzini@intecs.it

The Open Group

Scott Hansen

Rond Point Schuman 6

5
th
 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of Stuttgart

Bastian Koller

Nobelstrasse 19

70569 Stuttgart

Germany

Tel: +49 711 68565891

E-mail: koller@hlrs.de

University of York

Neil Audsley

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325571

E-mail: neil.audsley@cs.york.ac.uk

Unparallel Innovation

Bruno Almeida

Rua das Lendas Algarvias, Lote 123

8500-794 Portimão

Portugal

Tel: +351 282 485052

E-mail: bruno.almeida@unparallel.pt

WINGS ICT Solutions

Panagiotis Vlacheas

336 Syggrou Avenue

17673 Athens

Greece

Tel: +30 211 012 5223

E-mail: panvlah@wings-ict-solutions.eu

 D3.1 ï First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Definition of TOC 12/04/17

0.2

Contribution of WINGS to Parallelization Toolset and Programming

Interface

05/05/17

0.3 Contribution of EGM to Model Based Testing section 09/05/17

0.4 Update of WINGSô and EGMôs contributions 25/05/17

0.5 Contribution of HLRS to Phantom Application Parallelization Ap-

proach and of YORK to FPGA section on the parallelization toolset

30/5/17

0.6 Executive Summary, Introduction and Conclusion 31/5/17

0.7 HLRS and York review and corresponding modifications 7/6/17

1.0 Final Contributions and Modifications 9/6/17

2.0 Contributions from WINGS, EGM, YORK and UNPARALLEL of

the Innovations Beyond the State-of-the-Art subsections to incorpo-

rate EC reviewersô comments.

2/11/17

D3.1 ï First report on programmer- and productivity-oriented software tools

Page iv Version 2.0 2 November 2017

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Scope ... 1

1.2 PHANTOM Application Parallelization Approach .. 2

2. Parallelization Toolset ... 3

2.1 Use Case requirements ... 4

2.2 Code Analysis ... 4
2.2.1 Design Specifications .. 4
2.2.2 Implementation Details ... 6
2.2.3 Demonstration/Example usage .. 8

2.2.4 Dependencies/integration aspects .. 9
2.2.5 Innovations beyond the state-of-the-art ... 10

2.3 Technique Selection .. 11

2.3.1 Design Specifications .. 11
2.3.2 Implementation Details ... 12
2.3.3 Dependencies/integration .. 15
2.3.4 Demonstration/Example usage .. 16

2.3.5 Innovations beyond the state-of-the-art ... 17

2.4 FPGAs .. 18

2.4.1 PHANTOM Hardware Interface ... 20
2.4.2 Innovations beyond the state-of-the-art ... 20

3. Programming Interfaces ... 23

3.1 Use Case requirements ... 23

3.2 Shared Memory API ... 24
3.2.1 Design Specifications .. 24
3.2.2 Implementation Details ... 24

3.3 Queue API ... 26
3.3.1 Design Specifications .. 26
3.3.2 Implementation Details ... 26

3.4 Signal API ... 29
3.4.1 Design Specifications .. 29

3.4.2 Implementation Details ... 29

3.5 PHANTOM API for CPU-GPU communication .. 32

3.5.1 Design Specifications .. 32
3.5.2 Implementation Details ... 33

3.6 Dependencies/integration ... 35

3.7 demonstrator/Example usage ... 35

3.8 Innovations beyond the state-of-the-art .. 37

3.8.1 Background technologies utilised in development .. 37
3.8.2 Summary of new technologies/extensions developed ... 38
3.8.3 Early/Full Prototypes functionality ... 38

4. Model Based Testing ... 39

4.1 Use Case requirements ... 39

 D3.1 ï First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page v

Confidentiality: Public Distribution

4.1.1 Surveillance specification .. 40

4.1.2 Telecom specification .. 42
4.1.3 HPC specification .. 43

4.2 Design Specifications ... 44

4.3 Implementation Details... 45
4.3.1 MBT models .. 47
4.3.2 Generated Test cases ... 50
4.3.3 TTCN-3 Publisher ... 51

4.3.4 Codec/Decodec .. 53
4.3.5 System Adapter ... 53
4.3.1 Implementation Summary ... 55

4.4 Demonstration and Testing Results .. 55

4.5 Dependencies/integration ... 58
4.5.1 Integration objectives .. 58
4.5.2 PHANTOM platform interfaces .. 58
4.5.3 MBT interaction flow with PHANTOM ... 59

4.6 Innovations beyond the state-of-the-art (EGM) ... 60

4.6.1 Background technologies utilised in development .. 60
4.6.2 Summary of new technologies/extensions developed ... 61

4.6.3 Early/Full Prototypes functionality ... 62

5. Conclusion .. 64

6. References .. 65

D3.1 ï First report on programmer- and productivity-oriented software tools

Page vi Version 2.0 2 November 2017

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This document describes the initial developments on the tools and technologies to

support the activities of the Parallelization Toolset and Model Based Testing modules of

the PHANTOM architecture, and on the specification of the PHANTOM Programming

Interface. Further developments will be reported in D3.2 ï ñFinal report on

programmer- and productivity-oriented software toolsò.

In section 2, the Parallelization Toolset is described. Presented in this section are the

technologies and algorithms for both code analysis and technique selection. Code

analysis uses tools like ANTLR and CETUS to parse and to identify parallelisable code.

This section also describes the methodology used to select the proper technology for the

implementation of parallelised tasks based on the deployment plan provided by the

Multi -Objective Mapper. The PHANTOM API is implemented by either CUDA,

OpenMP, OpenCL, MPI or Pthreads APIs, based on these decisions. Still in the context

of the Parallelization toolset, it is also provided some insight on the work developed for

task parallelization on FPGAs.

Section 3 identifies and describes APIs to support the development of PHANTOM

applications following a component-based approach. These APIs use the C

programming language and allow the use of generic parallelisation functionalities,

addressing both synchronization and data sharing mechanisms. This section also

presents the PHANTOM API for communications between CPUs and the attached GPU

devices, used to describe functions intended to be executed in GPU devices.

The final section reports the current status of Model Based Testing development. A

study of the functional behaviour of each use case is performed to understand the

expected inputs and outputs of the tests. A methodology for the definition and execution

of tests is provided, being also identified the tools to be used in PHANTOM and how

the Model Based Testing module will interact with other modules of PHANTOM

architecture.

 D3.1 ï First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 SCOPE

This document reports the progress of all tasks executed in the context of WP3 ï

ñProgrammer- and productivity- oriented software tools. Figure 1-1 shows a

representation of the PHANTOM architecture. Highlighted in red are the components

developed within the context of WP3 activities. These components are the PHANTOM

Programming API, the Parallelization Toolset and the Model Based Testing.

Figure 1-1: Modules of the PHANTOM architecture addressed in WP3

The Parallelization Toolset, which will be discussed in section 2, identifies

parallelizable sections of the PHANTOM components, provides them to the Multi-

objective Mapper and, if the mapper elects to use a parallelisation scheme for that

component, implements it.

The PHANTOM Programming Interface details and implements the communication and

data sharing between the different components that compose a PHANTOM application.

This is described in section 3.

Model Based Testing corresponds to a toolset dedicated to performing the testing of the

PHANTOM application, both helping developers to test the functional behaviour of the

application and providing metrics to help the Multi-objective Mapper on the decision of

parallelization plan. This component will be described in section 4.

Components	&	

Configurat ion

Resource	managerResource	manager

Programming	model

Applications	in	
C(++)	code

Mult i-object ive	mapper

MS

MS

MS

Monitoring
Sensors

Monitoring

Server

Monitoring	library

Configuration Runtime	metrics
Historical	information

Hardware	platform
specification	/

Separable	domains

Parallelizat ion	toolset

Resource
availability

OS/ 	System	SW

GPU

FPGAMult icore CPU

Resource	manager

Deployment	manager

S
ta

ti
c

R
u

n
ti

m
e

Repository

System	model,	and	
requirements

System	
configuration

PHANTOM	application

Parallelized	
components

Optimized	deployment	plan

Monitoring	
data

Optimized	deployment	
plan	&	components

Binaries	&	
configuration

Secure	

execut ion

Environment

Tools	&	

Binaries

Platform
Infrastructure

Compilation

Synthesis

Deployment	
tools

Monitoring
data

Execution
control

System	
interactions

OS

M odel	Based	
Test ing

Model-based
test	generation

Test	logging &	
control

Test	execution
platform

Applicat ion,	system	model,	

and	configurat ion

D3.1 ï First report on programmer- and productivity-oriented software tools

Page 2 Version 2.0 2 November 2017

Confidentiality: Public Distribution

1.2 PHANTOM APPLICATION PARALLELIZATION APPROACH

The PHANTOM programming model for applications (see D2.1 for details) follows a

component-based approach ï the application is constructed as a set of individual

components (Figure 1-2). Components have their own thread(s) of control and are

independent. They do not share data or communicate, except where explicitly

enumerated by the design of the application. The enumeration of components and their

shared data is called the Component Network.

Figure 1-2: Component-based PHANTOM application

The components are separate processes and can thus benefit from deployment on

distributed hardware resources (see D4.2 for details on the PHANTOM heterogeneous

infrastructure testbed). The programming model provides the notion of communication

channels, through which the components must communicate with one another in order

to exchange the data or synchronise the execution (such as a one-directional ñqueueò or

bidirectional ñsharedò, see more in D2.1).

Since the PHANTOM programs are running on different hardware and thus do not share

any common compute resources, they can be treated as fully parallel executions. In

order to synchronise the execution of application components in accordance with the

application logic, the programs might use sync messages (which are enumerated in the

Component Network).

The component-based execution constitutes a basic level of parallelism ï coarse-

grained. Coarse-grained parallelism depends on the application logic and is enforced by

the application developer through the programming model (and the associated execution

environment of the PHANTOM platform).

The next parallelisation level ï fine-grained parallelism ï can be achieved inside the

individual components and aims to fully utilize the available parallel compute power

(such as CPU cores, GPU kernels, or FPGAs). Fine-grained parallelism requires a

special framework ï the Parallelization Toolset.

Component A

Component B

Component C

Queue
Shared

Memory

Push

Pop

Read

Write

Read /

Write

 D3.1 ï First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 3

Confidentiality: Public Distribution

2. PARALLELIZATION TOOLSET

The Parallelisation Toolset is responsible for the identification of concurrent regions in

the application code, for source-to-source code transformation to implement

parallelisation, and for considering pre-specified requirements and the decision of the

Multi -Objective Mapper described in D2.1.

Figure 2-1: Parallelization Toolset positioning in PHANTOM toolflow.

Since PHANTOM uses a component based programming model (as described in D1.2),

the Parallelisation Toolset retrieves the components which compose the PHANTOM

program, analyses and transforms them in order to 1) replicate them to many identical

copies that run on different óslicesô of input data and 2) to create different versions of

components which exploit GPUs, FPGAs, SMP multiprocessors or Cloud

environments. The first operation is performed by the Code Analysis described in

section 2.2, which provides appropriate parallelization information to the Multi-

Objective Mapper. Then the latter functionality is performed by Technique Selection

(described in section 2.3), driven by the mapping decision of the Multi-Objective

Mapper and assisted by four sub-toolsets, which process the components towards a

specific platform architecture. The sub-toolsets consist of:

¶ CPU Toolset (CT) for transforming components targeting shared memory

uniform memory access (UMA) or non-uniform memory access (NUMA), cache

coherent, symmetric multiprocessing (SMP), CPU architectures

¶ GPU Toolset (GT) which transforms components for graphics processing units

(GPU) implementation

¶ FPGA Toolset (FT), handling components for FPGA implementations

¶ Cloud Technologies Toolset (CTT): Transforms components for Cloud

environments

D3.1 ï First report on programmer- and productivity-oriented software tools

Page 4 Version 2.0 2 November 2017

Confidentiality: Public Distribution

This document primarily considers the CPU Toolset and GPU Toolset, whilst the rest of

the sub-toolsets will be described in future deliverables of WP3 and WP4.

2.1 USE CASE REQUIREMENTS

The Parallelisation Toolset is one of the main components of PHANTOM framework

and it will transform and generate parallel code for the heterogeneous platforms that

comprise the infrastructure of PHANTOM. Its operation is therefore significant for all

three use cases: Surveillance, Telecommunications and High-Performance Computing.

In general, the use case requirements refer to the support and the capabilities of code

generation, support of heterogeneous platforms, support of parallelisation APIs and

programming languages, as defined in D1.1. The addressed requirements are the follow-

ing:

Req. No. Requirement Overall Priority
U3 Parallelization of sequential application code, when complemented

by parallelization instructions provided by the user
SHALL

U4 Automatic identification and parallelization of regions of sequential

application code
SHOULD

U5 Support for multi-threaded concurrent tasks, including communica-

tion and synchronisation
SHALL

U6 Support of parallelization, influenced by non-functional require-

ments information
SHOULD

U7 Support for communications data-centric applications (e.g. automat-

ic scaling of components to the actual size of data to be processed)
SHALL

U8 Support for component-based application design SHALL
U14 Exploitation of SIMD instructions sets provided by CPUs SHOULD
U19 Generation of target dependent parallel code for all mandatory

target platforms without user involvement when sufficient annota-

tions are provided.
SHOULD

U21 Automation of transferring data to/from different memories accord-

ing to the component data model
SHALL

U22 Support for indication of application blocks to be parallelized SHALL
U23 Support for indication of data dependencies, defining how data can

be partitioned/split among the parallel application components
SHALL

U32 Support for application source code developed in C SHALL
U33 Support for higher level language such as Java and C++ MAY
U37 Support for exposing the generated parallel code to the user SHALL
U38 User modifications of the generated parallel code subject to re-

strictions or protected segments
SHOULD

2.2 CODE ANALYSIS

The main task of the Code Analysis is to parse the componentsô source code of the user

provided application and perform analysis for identifying the codeôs parallel regions,

along with transformation, with emphasis on loop and task parallelization.

2.2.1 Design Specifications

Code Analysis retrieves the Component Network (described in D1.2.) which is provided

by the user and stored in the PHANTOM Repository. Code Analysis parses the

Component Network in order to identify the user-provided components along with their

 D3.1 ï First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 5

Confidentiality: Public Distribution

source code, which are stored in the Repository. Then the tool performs its processing

according to the workflow depicted in the following figure:

Figure 2-2: Code analysis positioning in PHANTOM tool-flow

The first operation includes the creation of a structural representation (i.e. parse tree as

depicted in Figure 2-3) of the source code of each component, which will facilitate the

identification of the variables and functions, important for loop and task parallelization.

Figure 2-3: Example of source code structural (tree) representation.

Based on the structural representation, the analysis will attempt to further simplify the

source code in order to further facilitate the loop and task parallelization. The code

analysis is then performed by searching the simplified source code for data

dependencies [10][11][12], that could prevent the components parallelization (using

tools such as COINS [8], CETUS [9]). The next step is the identification of ñforò loops

and variables that can be parallelized, where the tool annotates them as parallelizable or

not according to the dependency test outcome. In case a loop is parallelizable, the code

analysis transforms the parallelizable loops-variables attributes (e.g. iteration size-limit)

with specific PHANTOM directives (e.g. phantom_slice_size()) that enable the

selected loop variables to be further parallelized and the component to be replicated.

D3.1 ï First report on programmer- and productivity-oriented software tools

Page 6 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Finally, the analysis exports the parallelization annotations/directives which provide the

maximum number of possible parallel components to the Multi-Objective Mapper

module (described in D2.1).

2.2.2 Implementation Details

The Code Analysis is a set of classes and functions implemented in Java, using

appropriate XML libraries to be able to parse and modify XML documents. The input of

the Code Analysis is the Component network XML document and the specified

componentsô source codes (at the current stage C/C++) along with their header files that

will be further analysed.

Then the Code Analysis uses ANTLR [1] (see also D4.1) tool to parse and create the

structural (tree) representation of each identified component. An example of the

ANTLR operation is provided in the following figure:

Figure 2-4: Example of ANTLR parsing. (Picture from ANTLR framework [1])

ANTLR stores the exported parse tree in a Java form that is aligned with the Java form

of the Code Analysis and simplifies the following steps of the analysis.

In order to achieve a more efficient analysis of the source code elements (declarations,

expressions variables), Code Analysis employs the CETUS tool [9] (see also D4.1) in

order to provide an intermediate representation between the parse tree and the source

code, as shown in Figure 2-5, that will consist of the objects that are more meaningful

for the parallelization process (e.g. for, while, loops, loop size, loop iterators, etc.).

Figure 2-5: Example of intermediate representation using CETUS [9]

 D3.1 ï First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 7

Confidentiality: Public Distribution

The next step consists of code simplification in which the Code Analysis attempts to

transform the source code assignments and operations in a form that will facilitate the

loop and task parallelization (e.g. simplifies mathematical operations). The Code

Analysis is currently using CETUS functions for code simplification but also other

refactoring tools are under investigation, such as CodeRush [3] and AutoRefactor [4].

Specifically, the Code Analysis will execute the single variable declaration function,

which re-writes variable declaration to achieve single variable per declaration. Then it

executes induction substitution which recognizes and substitutes induction variables in

loops that take the form of iv = iv + expr [9]. Assignments of this form prevent a loop

from being parallelized due to its data dependence, since variables inside a loop cycle

depends on the values assigned in other cycles. The CETUS induction substitution will

transform these assignments to a form that does not include significant data

dependencies, thus enabling loop parallelization. This substitution process is

exemplified in the following figure.

Figure 2-6: Example of code simplification

After the code simplification, the Code Analysis will perform one of the most

significant tasks which is the identification of data dependencies [10][11][12]. As

aforementioned, the Code Analysis will give emphasis on searching for loops that are

parallelizable, since they consume most of the execution time of a sequential program.

In case a loop includes dependencies between its instructions it cannot be parallelized

without affecting its initial context and operation. These situations require the execution

of code transformation to eliminate the data dependencies. The CETUS data

dependence analysis framework [9] gathers dependence information for array accesses

within loop nests and creates a data dependence graph, on top of which it performs

conventional dependence tests, such as the Banerjee test [13][14] and the Greatest

Common Divisor test [15]. In case that a loop includes data dependencies that cannot be

resolved then the loop is characterized as not parallelizable. Some data dependencies

can be resolved either by CETUSôs conventional methods either by custom

modifications and algorithms. The current version of Code Analysis extends the loop

dependence handling by introducing a custom modification of the CETUS testing to

enable loop transformation towards the PHANTOM parallelization requirements. For

example, in case of a specific type of data dependence in a ñforò loop that can be split

by iteration size, the code analysis will slice the ñforò loop in a multitude of ñforò loops

by substituting the iteration size with the PHANTOM specific directive

(phantom_slice_size()), thus each component will execute the loop until the size of the

each slice, as shown in Figure 2-7.

D3.1 ï First report on programmer- and productivity-oriented software tools

Page 8 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Figure 2-7 Example of a parallelizable loop

Data dependency test is an aspect that can improve loop parallelization and is

investigated for the future versions of the Code Analysis. Since, PHANTOM addresses

parallelisation of components targeting heterogeneous platforms, more data dependency

algorithms will be investigated, considering also range analysis aspects for future

versions.

The final step of the Code Analysis includes the exploitation of the achieved

parallelization level of the analysed components. The analysis edits the Component

Network XML document where, for each component, it adds the maximum number of

possible parallel components (and communication objects accordingly), as described in

the following figure:

Figure 2-8: Example of parallelization directive

The above figure depicts an example of the XML element ñparallelisation directiveò

which provides the maximum number of possible parallel subcomponents, for a specific

component (in this case ñcomponent name=ôAô ò). This information will assist the

Multi -Objective Mapper module (described in D2.1) to further replicate the

parallelizable components, improving the mapping outcome and overall efficiency.

2.2.3 Demonstration/Example usage

The Code Analysis is evaluated in terms of its ability to identify parallelizable loops in

the source code of the user provided components. The current testing scenario consists

of the following steps:

1. The Parallelization Toolset retrieves the component network from the repository

2. The Code Analysis parses the components specified in the component network

3. The identified loops are tested for data dependencies

 D3.1 ï First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 9

Confidentiality: Public Distribution

4. The parallelizable loops are transformed accordingly, with the addition of

PHANTOM specific directives

5. The Code Analysis exports the parallelization directives to the Component Network

that will used by MOM.

The following picture provides a test run of the Code Analysis on a custom source

component (in the C/C++ language), along with a Graphical User Interface that helps

the user to execute the code analysis.

Figure 2-9: Example of Code Analysis test

In the example of the above, the analysis identified all existing loops and was able to

parallelize one of them 64 times, whilst the remaining ñforò loops could not be

parallelized due to unresolved dependencies. Current results show that the first version

of the Code Analysis is able to identify all existing loops inside the componentsô source

code, and is able to resolve-parallelize a number of non-complex existing loops. The

number and the complexity of the parallelized loops is expected to grow in the next

versions of the Code Analysis. Furthermore, the Code Analysis is tested in terms of

execution time since it might add a non-trivial overhead to the overall optimization and

optimization process. Current results show that the execution time of the Code Analysis

has values in the range of a few seconds (<10s) for up to 5 source code components, but

more tests will follow in the future implementations.

2.2.4 Dependencies/integration aspects

The Code Analysis is related to the PHANTOM Programming Model (see D1.2), from

which it retrieves the user defined Component Network, along with the application

components' source code to be parallelized. Then, the Code Analysis transformation

phase uses the PHANTOM Communication APIs, protocols and corresponding

functions that will be added in the componentsô source code to provide the loop

parallelization. Finally, the Code Analysis is strongly related to the Multi-Objective

D3.1 ï First report on programmer- and productivity-oriented software tools

Page 10 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Mapper (MOM) developed in WP2, since the analysis will provide the parallelization

directives facilitating MOM to explore the available number of the parallelized

components, in order to replicate them. Existing parallelization tools and frameworks

will be investigated to facilitate the deployment of the parallel design regions, as

suggested by WP1, on the heterogeneous infrastructure, set up by WP4.

2.2.5 Innovations beyond the state-of-the-art

2.2.5.1 Background technologies utilised in development

XML Parsing Classes

The Code Analysis is a set of classes and functions implemented in Java, using

appropriate XML libraries to parse and modify XML documents. These libraries are

mainly required to process the Component Network that provides all necessary

information about the components.

Source code Parser

The Code Analysis uses the ANTLR tool (http://www.antlr.org/) to parse and create the

structural (tree) representation of each identified component. ANTLR stores the

exported parse tree in a Java form that is aligned with the Java form of the Code

Analysis and simplifies the following steps of the analysis.

Intermediate Representation (IR) and Dependence Analysis

CETUS compiler infrastructure (https://engineering.purdue.edu/Cetus/) is used for the

IR and the Dependence Analysis of the componentsô code. The tool is responsible for

both, creating an intermediate level of description for the code, and running some of the

latest available dependence tests on it, determining if itôs parallelizable or not.

2.2.5.2 Summary of new technologies/extensions developed

High-Level Annotations and Parallelization Directives

Code Analysis was extended with certain functionalities designed to provide helpful

information about the componentsô code. In specific, high level annotations are

produced by analysing the results provided by CETUS, as well as directives about

components parallelization capabilities are added in the component network,

information that will be used for the functionality of the Multi-Objective Mapper.

2.2.5.3 Early/Full Prototypes functionality

Early -First Year Prototype

The component model is being successfully extracted from the Component Network to

be used by the rest of the Code Analysisô functionalities. The analysis of the

componentsô code is able to employ successfully the CETUS compiler infrastructure

and locate certain parts of the code that do not seem to have any dependencies, thus, can

be parallelized. According to the information extracted by the Code Analysis,

parallelization directives are successfully added to both the Component Network and to

the source code of each component.

 D3.1 ï First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 11

Confidentiality: Public Distribution

Full Prototype and Next Steps

Driven by the continuous research that is being done on automatic parallelization, other

tools are being compared with CETUS, with new techniques at their disposal and more

capabilities. In specific, the ROSE Compiler has already been embedded in the PT and

is currently being tested against CETUS with promising results, as well as PLUTO +

Polly (with its use of the Polyhedral Model). In addition, other code analysis tools will

also be investigated in the context of source code simplification and to further provide

more facilities in code transformation and dependence analysis, in regard to the

development of the latest parallelization techniques available.

2.3 TECHNIQUE SELECTION

The Technique Selection (TS) operation is performed after the execution of the Multi-

Objective Mapper, in order to receive its mapping decision and produce the

parallelization indications inside the componentsô source code, to guide the Deployment

manager on the generation or activation of the actual parallelization functions.

2.3.1 Design Specifications

The Technique Selection receives the MOM outcome, indicating the mapping decisions,

along with the platform description and the component network to further decide on the

best parallelization API for the parallelization technique (e.g. OpenMP, threads

communication, MPI, etc.). Furthermore, TS will provide information to the

PHANTOM API execution management functions, developed in the context of

PHANTOM to initialize/finalize important functionalities of low level communication

APIs, applied to all components that will use those APIs (e.g. in case there are more

than one pthread component these functions initialize mutex variables). These functions

facilitate the Deployment Manager with the adoption and execution of low level

communication APIs. TS functionalities are detailed in the following figure:

D3.1 ï First report on programmer- and productivity-oriented software tools

Page 12 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Figure 2-10: Techniques selection positioning in PHANTOM tool-flow

As depicted in the above figure (Figure 2-10) TS first parses the MOMôs outcome (i.e.

optimized deployment plan) in order to:

1. Classify the components depending on the type of platform to which they are

mapped;

2. Identify the interacting components of the final deployment.

Then, the TS operation executes a fast and low complexity decision mechanism which

selects the appropriate low-level communication API (e.g. OpenMP, MPI, OpenCL)

that is the best fit for the components, according to the specified mapping to physical

resources (processing elements).

Furthermore, TS provides information regarding the PT techniques selection by editing

PHANTOM API functions with annotations that will facilitate the Deployment

Manager operation based on existing parallelization APIs. For example,

#pragma phantom MPI_Send

In addition, the existing communication protocol annotations (e.g. #pragma phantom

shared in data), are replaced by lower level communication directives (e.g. #pragma

phantom MPI_Send()), that indicate the Deployment manager to generate or activate

the actual parallelization functions.

2.3.2 Implementation Details

The Technique Selection tool is implemented in Java and similarly to the Code Analysis

it uses XML libraries to parse its input and generate its output. The input to TS is the

Optimized Deployment Plan (in XML form) provided by the MOM, the Component

Network XML document and the specified componentsô source codes (currently

supporting C/C++) along with their header files that will be further analysed.

The first step of the operation includes the XML parsing and analysis of MOMôs

optimized deployment plan along with the XML parsing of the Component Network in

order to correlate the information from the two documents. The current implementation

considers the following component attributes:

Table 2-1: Component attributes for Technique Selection

Component Attributes

Mapping name: e.g.

component_A_1_map

Mapping type: e.g. processing

Component name: e.g. A_1

Component id: 1

Subcomponents: e.g. 32

 D3.1 ï First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 13

Confidentiality: Public Distribution

Processor name: e.g. P1

CPU-name: e.g. CPU2

Device Type: CPU-based

The first attribute is the mapping name, relative to the name of the component. Then the

mapping also includes a mapping type, which indicates whether the mapping refers to a

mapping of a component to a processing element (tagged as ñprocessingò) or a mapping

of a communication object (tagged as ñcommunicationò) to a physical communication

buffer. In addition, TS considers the component name, id and also the

ñSubcomponentsò attribute, which refers to the possible number of parallel

subcomponents of this component. TS considers the processor name, the CPU name

and the Device Type (e.g. CPU-based) to which a component is mapped.

TS specifies the communication objects and their attributes in order to assist the

technique selection process (e.g. if memory type==local, use pthreads) while also

assigning specific attributes to the PHANTOM protocols and APIs, used inside the

componentsô source code (e.g. queue_get(var, var->source=2é). The considered

communication object attributes are provided in the following table:

Table 2-2: Communication object attributes for the Techniques Selection

Communication object Attributes

Mapping name: e.g.

communicationObjectBF1_1_map

Mapping type: e.g. communication

Component name: e.g. BF1_1

Communication object id=0

Memory name: e.g. MEM1

Memory type: e.g. local

Source name: e.g. A_1

Source id: e.g. 1

Target name: e.g. B

Target id: e.g. 0

Similar to the component attributes, the communication object attributes are the

mapping name, relative to the name of the communication object, the mapping type

which in this case it is ñcommunicationò the component name referring to the

communication objects name and the id of the object. In addition, TS considers the

physical memoryôs name (or channel/buffer) to which the communication object is

mapped, along with its type (local or shared). Furthermore, TS needs to know the

source component name along with its ñSource-idò and the target name along with the

ñTarget-idò.

D3.1 ï First report on programmer- and productivity-oriented software tools

Page 14 Version 2.0 2 November 2017

Confidentiality: Public Distribution

The second step includes the parsing of componentsô source code, in order to specify

the attributes of the variables that have to be processed (e.g. sent/received) through the

PHANTOM functions. This operation identifies the following attributes:

1. The variables to be pushed in queues or memories (e.g. #pragma phantom

queue out | output_image_L |)

2. The variableôs attributes: type, dimensions, size (e.g. double | output_image_L |

[64] |)

3. Identification of communication protocols inside the components (e.g.

phantom_queue_put(é))

In the third step, TS decides on the specific low-level communication API for each

component (e.g. components A and B will use MPI but component C will use CUDA).

The selection process iterates through the communication objects, where for each of

them identifies the source (and target components) and selects the appropriate low-level

communication API according to the communication type (e.g. memory/Ethernet),

source processor type, target processor type. The following listing provides an example

of a low-level communication API indication:

Listing 2-1: Example of low level communication API

The current version of TS considers the pthreads, OpenMP, MPI, CUDA, OpenCL

APIs (also described in D4.1) for the low-level communication APIs.

The final step includes the attribute replacement and code generation inside the

componentsô source code but also in PHANTOM API headers and functions. In this

direction, TS parses the PHANTOM API header files and replaces component-specific

attributes with all the information derived from XML and componentsô code parsing, in

order to provide the PHANTOM API communication functions and protocols, with

appropriate information, regarding their low-level implementation. The following

listing provides an example where pthreads, OMP and MPI specific attributes were

added to the component.

If (source processor type == CPU) and (target processor type == CPU) and (communication

type == local memory)

{

 return phantom_Pthreads;

}

 D3.1 ï First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 15

Confidentiality: Public Distribution

Listing 2-2: Sample of component attributes definitions

The above information is stored in specific structures initialized at the execution of the

PHANTOM application and is used for the proper parallelization of the components and

the proper execution of the PHANTOM API functions. The following listing shows an

example of a structure to store this information.

Listing 2-3: Example of PHANTOM API structure

Finally, the existing communication protocol annotations (e.g. phantom_queue_put

(dataΝ)), are replaced by low-level communication directives (e.g. cudamemcpy

(dataΝ)), that indicate the Deployment Manager to generate or activate the actual

parallelization functions. TS replaces the arguments of the PHANTOM API functions

with the specific communication object attributes, in order to match the function with

the appropriate structure corresponding to the variable (e.g. output_image_L) and derive

its attributes (e.g. source, target, typeé). For GPU code implementation, specific low-

level commands are considered in order to be generated inside the componentsô code,

used to forward the variables and the functions to the GPU device (e.g.

cudaMemcpyAsync(dev_in, simage, size_in*sizeof(double),

cudaMemcpyHostToDevice, stream[cmpid]);).

2.3.3 Dependencies/integration

TS first interacts with the PHANTOM Repository from where it retrieves its input

documents and source code. The first part of the input, consists of the Component

Network and the componentsô source code. TS also interacts with the Multi-Objective

Mapper in order to receive its outcome, defined as the optimized deployment plan. TS

uses the PHANTOM APIs to select, generate or replace the high-level communication

//Communication objects IDs and features

#define PHANTOM_NUMOFCOMMS 2

static int phantom_source_id[PHANTOM_NUMOFCOMMS]={1,2};

//The direction of the communication object: 0.IN-pull, 1.OUT-push, 2.INOUT-both/update

static int phantom_direction[PHANTOM_NUMOFCOMMS]={0,1};

//number of components that use a relevant toolkit

#define PHANTOM_PTHREADS_COMPS 3

#define PHANTOM_OMP_COMPS 0

#define PHANTOM_MPI_COMPS 0

struct phantom_componentlist

{

 int id;

 int dev_prc_type;

 int ext_api;

 int cmpprocess; //The process/processor in which the component belongs

 int cmp_slice_size;

 int cmp_offset;

};

D3.1 ï First report on programmer- and productivity-oriented software tools

Page 16 Version 2.0 2 November 2017

Confidentiality: Public Distribution

APIs with appropriate low-level communication APIs and indications. Finally, TS sends

the parallelized components to the Deployment Manager for further annotation

replacement, code and metadata generation.

2.3.4 Demonstration/Example usage

TS decides on the best low-level communication API per component, but it also

matches the final deployment plan with the components and their communication

functions. In addition, TS replaces existing annotations and information with low-level

annotations referring to low-level communication APIs, facilitating the final

deployment of the parallelized components. In this direction, the current version is

evaluated in terms of its ability to select the appropriate low-level communication API,

according to the MOM outcome but also in terms of appropriate annotation

replacement.

The following paragraph includes an evaluation scenario in which MOM has decided to

map three components of an example application to the same processor, on nearby

CPUs to avoid the communication overhead. Technique Selection is expected to:

1. Identify the interacting components to provide PHANTOM APIs with relative

information (annotation replacement and generation) about the componentôs

number and the source and target of the communication objects;

2. Select an API that will introduce minimal communication overhead such as

OpenMP or pthreads; and

3. Generate appropriate low-level communication APIs.

The following figure depicts a diagram that includes the MOM outcome with its

components and memoriesô mapping.

Figure 2-11: Mapping example for Technique selection demonstration

Since the components (in this case A_1, A_2, B) are mapped to the same processor and

the communication objects (in this case BF1_1 and BF1_2) are mapped on two local

memories, TS decides (based on the processor type and the type of the communication

type) that each component will run on a different thread using pthreads. To this purpose,

