

Project Partners: Easy Global Market, GMV, Intecs, The Open Group, University of Stuttgart,
 University of York, Unparallel Innovation, WINGS ICT Solutions

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

PHANTOM Project Partners accept no liability for any error or omission in the same.

© 2017 Copyright in this document remains vested in the PHANTOM Project Partners.

Project Number 688146

D3.1 – First report on programmer- and productivity-
oriented software tools

Version 2.0

2 November 2017

Final

Public Distribution

Unparallel Innovation, Wings ICT Solutions, Easy Global
Market, University of Stuttgart

D3.1 – First report on programmer- and productivity-oriented software tools

Page ii Version 2.0 2 November 2017

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Easy Global Market

Philippe Cousin

2000 Route des Lucioles

Les Algorithmes Batiment A

06901 Sophia Antipolis

France

Tel: +33 6804 79513

E-mail: philippe.cousin@eglobalmark.com

GMV
José Neves

Av. D. João II, Nº 43

Torre Fernão de Magalhães, 7º

1998 - 025 Lisbon

Portugal

Tel. +351 21 382 93 66

E-mail: jose.neves@gmv.com

Intecs

Silvia Mazzini

Via Umberto Forti 5

Loc. Montacchiello

56121 Pisa

Italy

Phone: +39 050 9657 513

E-mail: silvia.mazzini@intecs.it

The Open Group

Scott Hansen

Rond Point Schuman 6

5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of Stuttgart

Bastian Koller

Nobelstrasse 19

70569 Stuttgart

Germany

Tel: +49 711 68565891

E-mail: koller@hlrs.de

University of York

Neil Audsley

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325571

E-mail: neil.audsley@cs.york.ac.uk

Unparallel Innovation

Bruno Almeida

Rua das Lendas Algarvias, Lote 123

8500-794 Portimão

Portugal

Tel: +351 282 485052

E-mail: bruno.almeida@unparallel.pt

WINGS ICT Solutions

Panagiotis Vlacheas

336 Syggrou Avenue

17673 Athens

Greece

Tel: +30 211 012 5223

E-mail: panvlah@wings-ict-solutions.eu

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.1 Definition of TOC 12/04/17

0.2

Contribution of WINGS to Parallelization Toolset and Programming

Interface

05/05/17

0.3 Contribution of EGM to Model Based Testing section 09/05/17

0.4 Update of WINGS‟ and EGM‟s contributions 25/05/17

0.5 Contribution of HLRS to Phantom Application Parallelization Ap-

proach and of YORK to FPGA section on the parallelization toolset

30/5/17

0.6 Executive Summary, Introduction and Conclusion 31/5/17

0.7 HLRS and York review and corresponding modifications 7/6/17

1.0 Final Contributions and Modifications 9/6/17

2.0 Contributions from WINGS, EGM, YORK and UNPARALLEL of

the Innovations Beyond the State-of-the-Art subsections to incorpo-

rate EC reviewers‟ comments.

2/11/17

D3.1 – First report on programmer- and productivity-oriented software tools

Page iv Version 2.0 2 November 2017

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Scope ... 1

1.2 PHANTOM Application Parallelization Approach .. 2

2. Parallelization Toolset ... 3

2.1 Use Case requirements ... 4

2.2 Code Analysis ... 4
2.2.1 Design Specifications .. 4
2.2.2 Implementation Details ... 6
2.2.3 Demonstration/Example usage .. 8

2.2.4 Dependencies/integration aspects .. 9
2.2.5 Innovations beyond the state-of-the-art ... 10

2.3 Technique Selection .. 11

2.3.1 Design Specifications .. 11
2.3.2 Implementation Details ... 12
2.3.3 Dependencies/integration .. 15
2.3.4 Demonstration/Example usage .. 16

2.3.5 Innovations beyond the state-of-the-art ... 17

2.4 FPGAs .. 18

2.4.1 PHANTOM Hardware Interface ... 20
2.4.2 Innovations beyond the state-of-the-art ... 20

3. Programming Interfaces ... 23

3.1 Use Case requirements ... 23

3.2 Shared Memory API ... 24
3.2.1 Design Specifications .. 24
3.2.2 Implementation Details ... 24

3.3 Queue API ... 26
3.3.1 Design Specifications .. 26
3.3.2 Implementation Details ... 26

3.4 Signal API ... 29
3.4.1 Design Specifications .. 29

3.4.2 Implementation Details ... 29

3.5 PHANTOM API for CPU-GPU communication .. 32

3.5.1 Design Specifications .. 32
3.5.2 Implementation Details ... 33

3.6 Dependencies/integration ... 35

3.7 demonstrator/Example usage ... 35

3.8 Innovations beyond the state-of-the-art .. 37

3.8.1 Background technologies utilised in development .. 37
3.8.2 Summary of new technologies/extensions developed ... 38
3.8.3 Early/Full Prototypes functionality ... 38

4. Model Based Testing ... 39

4.1 Use Case requirements ... 39

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page v

Confidentiality: Public Distribution

4.1.1 Surveillance specification .. 40

4.1.2 Telecom specification .. 42
4.1.3 HPC specification .. 43

4.2 Design Specifications ... 44

4.3 Implementation Details... 45
4.3.1 MBT models .. 47
4.3.2 Generated Test cases ... 50
4.3.3 TTCN-3 Publisher ... 51

4.3.4 Codec/Decodec .. 53
4.3.5 System Adapter ... 53
4.3.1 Implementation Summary ... 55

4.4 Demonstration and Testing Results .. 55

4.5 Dependencies/integration ... 58
4.5.1 Integration objectives .. 58
4.5.2 PHANTOM platform interfaces .. 58
4.5.3 MBT interaction flow with PHANTOM ... 59

4.6 Innovations beyond the state-of-the-art (EGM) ... 60

4.6.1 Background technologies utilised in development .. 60
4.6.2 Summary of new technologies/extensions developed ... 61

4.6.3 Early/Full Prototypes functionality ... 62

5. Conclusion .. 64

6. References .. 65

D3.1 – First report on programmer- and productivity-oriented software tools

Page vi Version 2.0 2 November 2017

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This document describes the initial developments on the tools and technologies to

support the activities of the Parallelization Toolset and Model Based Testing modules of

the PHANTOM architecture, and on the specification of the PHANTOM Programming

Interface. Further developments will be reported in D3.2 – “Final report on

programmer- and productivity-oriented software tools”.

In section 2, the Parallelization Toolset is described. Presented in this section are the

technologies and algorithms for both code analysis and technique selection. Code

analysis uses tools like ANTLR and CETUS to parse and to identify parallelisable code.

This section also describes the methodology used to select the proper technology for the

implementation of parallelised tasks based on the deployment plan provided by the

Multi-Objective Mapper. The PHANTOM API is implemented by either CUDA,

OpenMP, OpenCL, MPI or Pthreads APIs, based on these decisions. Still in the context

of the Parallelization toolset, it is also provided some insight on the work developed for

task parallelization on FPGAs.

Section 3 identifies and describes APIs to support the development of PHANTOM

applications following a component-based approach. These APIs use the C

programming language and allow the use of generic parallelisation functionalities,

addressing both synchronization and data sharing mechanisms. This section also

presents the PHANTOM API for communications between CPUs and the attached GPU

devices, used to describe functions intended to be executed in GPU devices.

The final section reports the current status of Model Based Testing development. A

study of the functional behaviour of each use case is performed to understand the

expected inputs and outputs of the tests. A methodology for the definition and execution

of tests is provided, being also identified the tools to be used in PHANTOM and how

the Model Based Testing module will interact with other modules of PHANTOM

architecture.

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 SCOPE

This document reports the progress of all tasks executed in the context of WP3 –

“Programmer- and productivity- oriented software tools. Figure 1-1 shows a

representation of the PHANTOM architecture. Highlighted in red are the components

developed within the context of WP3 activities. These components are the PHANTOM

Programming API, the Parallelization Toolset and the Model Based Testing.

Figure 1-1: Modules of the PHANTOM architecture addressed in WP3

The Parallelization Toolset, which will be discussed in section 2, identifies

parallelizable sections of the PHANTOM components, provides them to the Multi-

objective Mapper and, if the mapper elects to use a parallelisation scheme for that

component, implements it.

The PHANTOM Programming Interface details and implements the communication and

data sharing between the different components that compose a PHANTOM application.

This is described in section 3.

Model Based Testing corresponds to a toolset dedicated to performing the testing of the

PHANTOM application, both helping developers to test the functional behaviour of the

application and providing metrics to help the Multi-objective Mapper on the decision of

parallelization plan. This component will be described in section 4.

Components	&	

Configuration

Resource	managerResource	manager

Programming	model

Applications	in	
C(++)	code

Multi-objective	mapper

MS

MS

MS

Monitoring
Sensors

Monitoring

Server

Monitoring	library

Configuration Runtime	metrics
Historical	information

Hardware	platform
specification	/

Separable	domains

Parallelization	toolset

Resource
availability

OS/	System	SW

GPU

FPGAMulticore CPU

Resource	manager

Deployment	manager

S
ta
ti
c

R
u
n
ti
m
e

Repository

System	model,	and	
requirements

System	
configuration

PHANTOM	application

Parallelized	
components

Optimized	deployment	plan

Monitoring	
data

Optimized	deployment	
plan	&	components

Binaries	&	
configuration

Secure	

execution

Environment

Tools	&	

Binaries

Platform
Infrastructure

Compilation

Synthesis

Deployment	
tools

Monitoring
data

Execution
control

System	
interactions

OS

Model	Based	
Testing

Model-based
test	generation

Test	logging &	
control

Test	execution
platform

Application,	system	model,	

and	configuration

D3.1 – First report on programmer- and productivity-oriented software tools

Page 2 Version 2.0 2 November 2017

Confidentiality: Public Distribution

1.2 PHANTOM APPLICATION PARALLELIZATION APPROACH

The PHANTOM programming model for applications (see D2.1 for details) follows a

component-based approach – the application is constructed as a set of individual

components (Figure 1-2). Components have their own thread(s) of control and are

independent. They do not share data or communicate, except where explicitly

enumerated by the design of the application. The enumeration of components and their

shared data is called the Component Network.

Figure 1-2: Component-based PHANTOM application

The components are separate processes and can thus benefit from deployment on

distributed hardware resources (see D4.2 for details on the PHANTOM heterogeneous

infrastructure testbed). The programming model provides the notion of communication

channels, through which the components must communicate with one another in order

to exchange the data or synchronise the execution (such as a one-directional “queue” or

bidirectional “shared”, see more in D2.1).

Since the PHANTOM programs are running on different hardware and thus do not share

any common compute resources, they can be treated as fully parallel executions. In

order to synchronise the execution of application components in accordance with the

application logic, the programs might use sync messages (which are enumerated in the

Component Network).

The component-based execution constitutes a basic level of parallelism – coarse-

grained. Coarse-grained parallelism depends on the application logic and is enforced by

the application developer through the programming model (and the associated execution

environment of the PHANTOM platform).

The next parallelisation level – fine-grained parallelism – can be achieved inside the

individual components and aims to fully utilize the available parallel compute power

(such as CPU cores, GPU kernels, or FPGAs). Fine-grained parallelism requires a

special framework – the Parallelization Toolset.

Component A

Component B

Component C

Queue
Shared

Memory

Push

Pop

Read

Write

Read /

Write

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 3

Confidentiality: Public Distribution

2. PARALLELIZATION TOOLSET

The Parallelisation Toolset is responsible for the identification of concurrent regions in

the application code, for source-to-source code transformation to implement

parallelisation, and for considering pre-specified requirements and the decision of the

Multi-Objective Mapper described in D2.1.

Figure 2-1: Parallelization Toolset positioning in PHANTOM toolflow.

Since PHANTOM uses a component based programming model (as described in D1.2),

the Parallelisation Toolset retrieves the components which compose the PHANTOM

program, analyses and transforms them in order to 1) replicate them to many identical

copies that run on different „slices‟ of input data and 2) to create different versions of

components which exploit GPUs, FPGAs, SMP multiprocessors or Cloud

environments. The first operation is performed by the Code Analysis described in

section 2.2, which provides appropriate parallelization information to the Multi-

Objective Mapper. Then the latter functionality is performed by Technique Selection

(described in section 2.3), driven by the mapping decision of the Multi-Objective

Mapper and assisted by four sub-toolsets, which process the components towards a

specific platform architecture. The sub-toolsets consist of:

 CPU Toolset (CT) for transforming components targeting shared memory

uniform memory access (UMA) or non-uniform memory access (NUMA), cache

coherent, symmetric multiprocessing (SMP), CPU architectures

 GPU Toolset (GT) which transforms components for graphics processing units

(GPU) implementation

 FPGA Toolset (FT), handling components for FPGA implementations

 Cloud Technologies Toolset (CTT): Transforms components for Cloud

environments

D3.1 – First report on programmer- and productivity-oriented software tools

Page 4 Version 2.0 2 November 2017

Confidentiality: Public Distribution

This document primarily considers the CPU Toolset and GPU Toolset, whilst the rest of

the sub-toolsets will be described in future deliverables of WP3 and WP4.

2.1 USE CASE REQUIREMENTS

The Parallelisation Toolset is one of the main components of PHANTOM framework

and it will transform and generate parallel code for the heterogeneous platforms that

comprise the infrastructure of PHANTOM. Its operation is therefore significant for all

three use cases: Surveillance, Telecommunications and High-Performance Computing.

In general, the use case requirements refer to the support and the capabilities of code

generation, support of heterogeneous platforms, support of parallelisation APIs and

programming languages, as defined in D1.1. The addressed requirements are the follow-

ing:

Req. No. Requirement Overall Priority
U3 Parallelization of sequential application code, when complemented

by parallelization instructions provided by the user
SHALL

U4 Automatic identification and parallelization of regions of sequential

application code
SHOULD

U5 Support for multi-threaded concurrent tasks, including communica-

tion and synchronisation
SHALL

U6 Support of parallelization, influenced by non-functional require-

ments information
SHOULD

U7 Support for communications data-centric applications (e.g. automat-

ic scaling of components to the actual size of data to be processed)
SHALL

U8 Support for component-based application design SHALL
U14 Exploitation of SIMD instructions sets provided by CPUs SHOULD
U19 Generation of target dependent parallel code for all mandatory

target platforms without user involvement when sufficient annota-

tions are provided.
SHOULD

U21 Automation of transferring data to/from different memories accord-

ing to the component data model
SHALL

U22 Support for indication of application blocks to be parallelized SHALL
U23 Support for indication of data dependencies, defining how data can

be partitioned/split among the parallel application components
SHALL

U32 Support for application source code developed in C SHALL
U33 Support for higher level language such as Java and C++ MAY
U37 Support for exposing the generated parallel code to the user SHALL
U38 User modifications of the generated parallel code subject to re-

strictions or protected segments
SHOULD

2.2 CODE ANALYSIS

The main task of the Code Analysis is to parse the components‟ source code of the user

provided application and perform analysis for identifying the code‟s parallel regions,

along with transformation, with emphasis on loop and task parallelization.

2.2.1 Design Specifications

Code Analysis retrieves the Component Network (described in D1.2.) which is provided

by the user and stored in the PHANTOM Repository. Code Analysis parses the

Component Network in order to identify the user-provided components along with their

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 5

Confidentiality: Public Distribution

source code, which are stored in the Repository. Then the tool performs its processing

according to the workflow depicted in the following figure:

Figure 2-2: Code analysis positioning in PHANTOM tool-flow

The first operation includes the creation of a structural representation (i.e. parse tree as

depicted in Figure 2-3) of the source code of each component, which will facilitate the

identification of the variables and functions, important for loop and task parallelization.

Figure 2-3: Example of source code structural (tree) representation.

Based on the structural representation, the analysis will attempt to further simplify the

source code in order to further facilitate the loop and task parallelization. The code

analysis is then performed by searching the simplified source code for data

dependencies [10][11][12], that could prevent the components parallelization (using

tools such as COINS [8], CETUS [9]). The next step is the identification of “for” loops

and variables that can be parallelized, where the tool annotates them as parallelizable or

not according to the dependency test outcome. In case a loop is parallelizable, the code

analysis transforms the parallelizable loops-variables attributes (e.g. iteration size-limit)

with specific PHANTOM directives (e.g. phantom_slice_size()) that enable the

selected loop variables to be further parallelized and the component to be replicated.

D3.1 – First report on programmer- and productivity-oriented software tools

Page 6 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Finally, the analysis exports the parallelization annotations/directives which provide the

maximum number of possible parallel components to the Multi-Objective Mapper

module (described in D2.1).

2.2.2 Implementation Details

The Code Analysis is a set of classes and functions implemented in Java, using

appropriate XML libraries to be able to parse and modify XML documents. The input of

the Code Analysis is the Component network XML document and the specified

components‟ source codes (at the current stage C/C++) along with their header files that

will be further analysed.

Then the Code Analysis uses ANTLR [1] (see also D4.1) tool to parse and create the

structural (tree) representation of each identified component. An example of the

ANTLR operation is provided in the following figure:

Figure 2-4: Example of ANTLR parsing. (Picture from ANTLR framework [1])

ANTLR stores the exported parse tree in a Java form that is aligned with the Java form

of the Code Analysis and simplifies the following steps of the analysis.

In order to achieve a more efficient analysis of the source code elements (declarations,

expressions variables), Code Analysis employs the CETUS tool [9] (see also D4.1) in

order to provide an intermediate representation between the parse tree and the source

code, as shown in Figure 2-5, that will consist of the objects that are more meaningful

for the parallelization process (e.g. for, while, loops, loop size, loop iterators, etc.).

Figure 2-5: Example of intermediate representation using CETUS [9]

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 7

Confidentiality: Public Distribution

The next step consists of code simplification in which the Code Analysis attempts to

transform the source code assignments and operations in a form that will facilitate the

loop and task parallelization (e.g. simplifies mathematical operations). The Code

Analysis is currently using CETUS functions for code simplification but also other

refactoring tools are under investigation, such as CodeRush [3] and AutoRefactor [4].

Specifically, the Code Analysis will execute the single variable declaration function,

which re-writes variable declaration to achieve single variable per declaration. Then it

executes induction substitution which recognizes and substitutes induction variables in

loops that take the form of iv = iv + expr [9]. Assignments of this form prevent a loop

from being parallelized due to its data dependence, since variables inside a loop cycle

depends on the values assigned in other cycles. The CETUS induction substitution will

transform these assignments to a form that does not include significant data

dependencies, thus enabling loop parallelization. This substitution process is

exemplified in the following figure.

Figure 2-6: Example of code simplification

After the code simplification, the Code Analysis will perform one of the most

significant tasks which is the identification of data dependencies [10][11][12]. As

aforementioned, the Code Analysis will give emphasis on searching for loops that are

parallelizable, since they consume most of the execution time of a sequential program.

In case a loop includes dependencies between its instructions it cannot be parallelized

without affecting its initial context and operation. These situations require the execution

of code transformation to eliminate the data dependencies. The CETUS data

dependence analysis framework [9] gathers dependence information for array accesses

within loop nests and creates a data dependence graph, on top of which it performs

conventional dependence tests, such as the Banerjee test [13][14] and the Greatest

Common Divisor test [15]. In case that a loop includes data dependencies that cannot be

resolved then the loop is characterized as not parallelizable. Some data dependencies

can be resolved either by CETUS‟s conventional methods either by custom

modifications and algorithms. The current version of Code Analysis extends the loop

dependence handling by introducing a custom modification of the CETUS testing to

enable loop transformation towards the PHANTOM parallelization requirements. For

example, in case of a specific type of data dependence in a “for” loop that can be split

by iteration size, the code analysis will slice the “for” loop in a multitude of “for” loops

by substituting the iteration size with the PHANTOM specific directive

(phantom_slice_size()), thus each component will execute the loop until the size of the

each slice, as shown in Figure 2-7.

D3.1 – First report on programmer- and productivity-oriented software tools

Page 8 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Figure 2-7 Example of a parallelizable loop

Data dependency test is an aspect that can improve loop parallelization and is

investigated for the future versions of the Code Analysis. Since, PHANTOM addresses

parallelisation of components targeting heterogeneous platforms, more data dependency

algorithms will be investigated, considering also range analysis aspects for future

versions.

The final step of the Code Analysis includes the exploitation of the achieved

parallelization level of the analysed components. The analysis edits the Component

Network XML document where, for each component, it adds the maximum number of

possible parallel components (and communication objects accordingly), as described in

the following figure:

Figure 2-8: Example of parallelization directive

The above figure depicts an example of the XML element “parallelisation directive”

which provides the maximum number of possible parallel subcomponents, for a specific

component (in this case “component name=‟A‟ ”). This information will assist the

Multi-Objective Mapper module (described in D2.1) to further replicate the

parallelizable components, improving the mapping outcome and overall efficiency.

2.2.3 Demonstration/Example usage

The Code Analysis is evaluated in terms of its ability to identify parallelizable loops in

the source code of the user provided components. The current testing scenario consists

of the following steps:

1. The Parallelization Toolset retrieves the component network from the repository

2. The Code Analysis parses the components specified in the component network

3. The identified loops are tested for data dependencies

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 9

Confidentiality: Public Distribution

4. The parallelizable loops are transformed accordingly, with the addition of

PHANTOM specific directives

5. The Code Analysis exports the parallelization directives to the Component Network

that will used by MOM.

The following picture provides a test run of the Code Analysis on a custom source

component (in the C/C++ language), along with a Graphical User Interface that helps

the user to execute the code analysis.

Figure 2-9: Example of Code Analysis test

In the example of the above, the analysis identified all existing loops and was able to

parallelize one of them 64 times, whilst the remaining “for” loops could not be

parallelized due to unresolved dependencies. Current results show that the first version

of the Code Analysis is able to identify all existing loops inside the components‟ source

code, and is able to resolve-parallelize a number of non-complex existing loops. The

number and the complexity of the parallelized loops is expected to grow in the next

versions of the Code Analysis. Furthermore, the Code Analysis is tested in terms of

execution time since it might add a non-trivial overhead to the overall optimization and

optimization process. Current results show that the execution time of the Code Analysis

has values in the range of a few seconds (<10s) for up to 5 source code components, but

more tests will follow in the future implementations.

2.2.4 Dependencies/integration aspects

The Code Analysis is related to the PHANTOM Programming Model (see D1.2), from

which it retrieves the user defined Component Network, along with the application

components' source code to be parallelized. Then, the Code Analysis transformation

phase uses the PHANTOM Communication APIs, protocols and corresponding

functions that will be added in the components‟ source code to provide the loop

parallelization. Finally, the Code Analysis is strongly related to the Multi-Objective

D3.1 – First report on programmer- and productivity-oriented software tools

Page 10 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Mapper (MOM) developed in WP2, since the analysis will provide the parallelization

directives facilitating MOM to explore the available number of the parallelized

components, in order to replicate them. Existing parallelization tools and frameworks

will be investigated to facilitate the deployment of the parallel design regions, as

suggested by WP1, on the heterogeneous infrastructure, set up by WP4.

2.2.5 Innovations beyond the state-of-the-art

2.2.5.1 Background technologies utilised in development

XML Parsing Classes

The Code Analysis is a set of classes and functions implemented in Java, using

appropriate XML libraries to parse and modify XML documents. These libraries are

mainly required to process the Component Network that provides all necessary

information about the components.

Source code Parser

The Code Analysis uses the ANTLR tool (http://www.antlr.org/) to parse and create the

structural (tree) representation of each identified component. ANTLR stores the

exported parse tree in a Java form that is aligned with the Java form of the Code

Analysis and simplifies the following steps of the analysis.

Intermediate Representation (IR) and Dependence Analysis

CETUS compiler infrastructure (https://engineering.purdue.edu/Cetus/) is used for the

IR and the Dependence Analysis of the components‟ code. The tool is responsible for

both, creating an intermediate level of description for the code, and running some of the

latest available dependence tests on it, determining if it‟s parallelizable or not.

2.2.5.2 Summary of new technologies/extensions developed

High-Level Annotations and Parallelization Directives

Code Analysis was extended with certain functionalities designed to provide helpful

information about the components‟ code. In specific, high level annotations are

produced by analysing the results provided by CETUS, as well as directives about

components parallelization capabilities are added in the component network,

information that will be used for the functionality of the Multi-Objective Mapper.

2.2.5.3 Early/Full Prototypes functionality

Early-First Year Prototype

The component model is being successfully extracted from the Component Network to

be used by the rest of the Code Analysis‟ functionalities. The analysis of the

components‟ code is able to employ successfully the CETUS compiler infrastructure

and locate certain parts of the code that do not seem to have any dependencies, thus, can

be parallelized. According to the information extracted by the Code Analysis,

parallelization directives are successfully added to both the Component Network and to

the source code of each component.

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 11

Confidentiality: Public Distribution

Full Prototype and Next Steps

Driven by the continuous research that is being done on automatic parallelization, other

tools are being compared with CETUS, with new techniques at their disposal and more

capabilities. In specific, the ROSE Compiler has already been embedded in the PT and

is currently being tested against CETUS with promising results, as well as PLUTO +

Polly (with its use of the Polyhedral Model). In addition, other code analysis tools will

also be investigated in the context of source code simplification and to further provide

more facilities in code transformation and dependence analysis, in regard to the

development of the latest parallelization techniques available.

2.3 TECHNIQUE SELECTION

The Technique Selection (TS) operation is performed after the execution of the Multi-

Objective Mapper, in order to receive its mapping decision and produce the

parallelization indications inside the components‟ source code, to guide the Deployment

manager on the generation or activation of the actual parallelization functions.

2.3.1 Design Specifications

The Technique Selection receives the MOM outcome, indicating the mapping decisions,

along with the platform description and the component network to further decide on the

best parallelization API for the parallelization technique (e.g. OpenMP, threads

communication, MPI, etc.). Furthermore, TS will provide information to the

PHANTOM API execution management functions, developed in the context of

PHANTOM to initialize/finalize important functionalities of low level communication

APIs, applied to all components that will use those APIs (e.g. in case there are more

than one pthread component these functions initialize mutex variables). These functions

facilitate the Deployment Manager with the adoption and execution of low level

communication APIs. TS functionalities are detailed in the following figure:

D3.1 – First report on programmer- and productivity-oriented software tools

Page 12 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Figure 2-10: Techniques selection positioning in PHANTOM tool-flow

As depicted in the above figure (Figure 2-10) TS first parses the MOM‟s outcome (i.e.

optimized deployment plan) in order to:

1. Classify the components depending on the type of platform to which they are

mapped;

2. Identify the interacting components of the final deployment.

Then, the TS operation executes a fast and low complexity decision mechanism which

selects the appropriate low-level communication API (e.g. OpenMP, MPI, OpenCL)

that is the best fit for the components, according to the specified mapping to physical

resources (processing elements).

Furthermore, TS provides information regarding the PT techniques selection by editing

PHANTOM API functions with annotations that will facilitate the Deployment

Manager operation based on existing parallelization APIs. For example,

#pragma phantom MPI_Send

In addition, the existing communication protocol annotations (e.g. #pragma phantom

shared in data), are replaced by lower level communication directives (e.g. #pragma

phantom MPI_Send()), that indicate the Deployment manager to generate or activate

the actual parallelization functions.

2.3.2 Implementation Details

The Technique Selection tool is implemented in Java and similarly to the Code Analysis

it uses XML libraries to parse its input and generate its output. The input to TS is the

Optimized Deployment Plan (in XML form) provided by the MOM, the Component

Network XML document and the specified components‟ source codes (currently

supporting C/C++) along with their header files that will be further analysed.

The first step of the operation includes the XML parsing and analysis of MOM‟s

optimized deployment plan along with the XML parsing of the Component Network in

order to correlate the information from the two documents. The current implementation

considers the following component attributes:

Table 2-1: Component attributes for Technique Selection

Component Attributes

Mapping name: e.g.

component_A_1_map

Mapping type: e.g. processing

Component name: e.g. A_1

Component id: 1

Subcomponents: e.g. 32

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 13

Confidentiality: Public Distribution

Processor name: e.g. P1

CPU-name: e.g. CPU2

Device Type: CPU-based

The first attribute is the mapping name, relative to the name of the component. Then the

mapping also includes a mapping type, which indicates whether the mapping refers to a

mapping of a component to a processing element (tagged as “processing”) or a mapping

of a communication object (tagged as “communication”) to a physical communication

buffer. In addition, TS considers the component name, id and also the

“Subcomponents” attribute, which refers to the possible number of parallel

subcomponents of this component. TS considers the processor name, the CPU name

and the Device Type (e.g. CPU-based) to which a component is mapped.

TS specifies the communication objects and their attributes in order to assist the

technique selection process (e.g. if memory type==local, use pthreads) while also

assigning specific attributes to the PHANTOM protocols and APIs, used inside the

components‟ source code (e.g. queue_get(var, var->source=2…). The considered

communication object attributes are provided in the following table:

Table 2-2: Communication object attributes for the Techniques Selection

Communication object Attributes

Mapping name: e.g.

communicationObjectBF1_1_map

Mapping type: e.g. communication

Component name: e.g. BF1_1

Communication object id=0

Memory name: e.g. MEM1

Memory type: e.g. local

Source name: e.g. A_1

Source id: e.g. 1

Target name: e.g. B

Target id: e.g. 0

Similar to the component attributes, the communication object attributes are the

mapping name, relative to the name of the communication object, the mapping type

which in this case it is “communication” the component name referring to the

communication objects name and the id of the object. In addition, TS considers the

physical memory‟s name (or channel/buffer) to which the communication object is

mapped, along with its type (local or shared). Furthermore, TS needs to know the

source component name along with its “Source-id” and the target name along with the

“Target-id”.

D3.1 – First report on programmer- and productivity-oriented software tools

Page 14 Version 2.0 2 November 2017

Confidentiality: Public Distribution

The second step includes the parsing of components‟ source code, in order to specify

the attributes of the variables that have to be processed (e.g. sent/received) through the

PHANTOM functions. This operation identifies the following attributes:

1. The variables to be pushed in queues or memories (e.g. #pragma phantom

queue out | output_image_L |)

2. The variable‟s attributes: type, dimensions, size (e.g. double | output_image_L |

[64] |)

3. Identification of communication protocols inside the components (e.g.

phantom_queue_put(…))

In the third step, TS decides on the specific low-level communication API for each

component (e.g. components A and B will use MPI but component C will use CUDA).

The selection process iterates through the communication objects, where for each of

them identifies the source (and target components) and selects the appropriate low-level

communication API according to the communication type (e.g. memory/Ethernet),

source processor type, target processor type. The following listing provides an example

of a low-level communication API indication:

Listing 2-1: Example of low level communication API

The current version of TS considers the pthreads, OpenMP, MPI, CUDA, OpenCL

APIs (also described in D4.1) for the low-level communication APIs.

The final step includes the attribute replacement and code generation inside the

components‟ source code but also in PHANTOM API headers and functions. In this

direction, TS parses the PHANTOM API header files and replaces component-specific

attributes with all the information derived from XML and components‟ code parsing, in

order to provide the PHANTOM API communication functions and protocols, with

appropriate information, regarding their low-level implementation. The following

listing provides an example where pthreads, OMP and MPI specific attributes were

added to the component.

If (source processor type == CPU) and (target processor type == CPU) and (communication

type == local memory)

{

 return phantom_Pthreads;

}

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 15

Confidentiality: Public Distribution

Listing 2-2: Sample of component attributes definitions

The above information is stored in specific structures initialized at the execution of the

PHANTOM application and is used for the proper parallelization of the components and

the proper execution of the PHANTOM API functions. The following listing shows an

example of a structure to store this information.

Listing 2-3: Example of PHANTOM API structure

Finally, the existing communication protocol annotations (e.g. phantom_queue_put

(data…)), are replaced by low-level communication directives (e.g. cudamemcpy

(data…)), that indicate the Deployment Manager to generate or activate the actual

parallelization functions. TS replaces the arguments of the PHANTOM API functions

with the specific communication object attributes, in order to match the function with

the appropriate structure corresponding to the variable (e.g. output_image_L) and derive

its attributes (e.g. source, target, type…). For GPU code implementation, specific low-

level commands are considered in order to be generated inside the components‟ code,

used to forward the variables and the functions to the GPU device (e.g.

cudaMemcpyAsync(dev_in, simage, size_in*sizeof(double),

cudaMemcpyHostToDevice, stream[cmpid]);).

2.3.3 Dependencies/integration

TS first interacts with the PHANTOM Repository from where it retrieves its input

documents and source code. The first part of the input, consists of the Component

Network and the components‟ source code. TS also interacts with the Multi-Objective

Mapper in order to receive its outcome, defined as the optimized deployment plan. TS

uses the PHANTOM APIs to select, generate or replace the high-level communication

//Communication objects IDs and features

#define PHANTOM_NUMOFCOMMS 2

static int phantom_source_id[PHANTOM_NUMOFCOMMS]={1,2};

//The direction of the communication object: 0.IN-pull, 1.OUT-push, 2.INOUT-both/update

static int phantom_direction[PHANTOM_NUMOFCOMMS]={0,1};

//number of components that use a relevant toolkit

#define PHANTOM_PTHREADS_COMPS 3

#define PHANTOM_OMP_COMPS 0

#define PHANTOM_MPI_COMPS 0

struct phantom_componentlist

{

 int id;

 int dev_prc_type;

 int ext_api;

 int cmpprocess; //The process/processor in which the component belongs

 int cmp_slice_size;

 int cmp_offset;

};

D3.1 – First report on programmer- and productivity-oriented software tools

Page 16 Version 2.0 2 November 2017

Confidentiality: Public Distribution

APIs with appropriate low-level communication APIs and indications. Finally, TS sends

the parallelized components to the Deployment Manager for further annotation

replacement, code and metadata generation.

2.3.4 Demonstration/Example usage

TS decides on the best low-level communication API per component, but it also

matches the final deployment plan with the components and their communication

functions. In addition, TS replaces existing annotations and information with low-level

annotations referring to low-level communication APIs, facilitating the final

deployment of the parallelized components. In this direction, the current version is

evaluated in terms of its ability to select the appropriate low-level communication API,

according to the MOM outcome but also in terms of appropriate annotation

replacement.

The following paragraph includes an evaluation scenario in which MOM has decided to

map three components of an example application to the same processor, on nearby

CPUs to avoid the communication overhead. Technique Selection is expected to:

1. Identify the interacting components to provide PHANTOM APIs with relative

information (annotation replacement and generation) about the component‟s

number and the source and target of the communication objects;

2. Select an API that will introduce minimal communication overhead such as

OpenMP or pthreads; and

3. Generate appropriate low-level communication APIs.

The following figure depicts a diagram that includes the MOM outcome with its

components and memories‟ mapping.

Figure 2-11: Mapping example for Technique selection demonstration

Since the components (in this case A_1, A_2, B) are mapped to the same processor and

the communication objects (in this case BF1_1 and BF1_2) are mapped on two local

memories, TS decides (based on the processor type and the type of the communication

type) that each component will run on a different thread using pthreads. To this purpose,

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 17

Confidentiality: Public Distribution

TS generates the appropriate values and files in the PHANTOM API functions and

communication protocols, as exemplified below:

Listing 2-4: Techniques selection attributes specification and replacement

In addition TS parses components for phantom_synchronize() functions and adds the

communication object ID in order to use its attributes (source, target, low level

communication API, etc.) for the low level protocols activation:

Listing 2-5: Techniques Selection annotations replacement with low level communication API

directives

2.3.5 Innovations beyond the state-of-the-art

2.3.5.1 Background technologies utilised in development

XML Parsing Classes

Like the Code Analysis, the Technique Selection is a set of classes and functions

implemented in Java, using appropriate XML libraries to parse and modify XML

documents. These libraries are mainly required to process the Component Network, that

provides all necessary information about the components, and the mapping that is

provided by the MOM.

2.3.5.2 Summary of new technologies/extensions developed

Technique Selection was fully custom made and is responsible to choose the

communication technology to be used for the communication between the different

code components. The main part concentrates on extracting all the information relevant

to the communication objects from the component network and the mapping provided

by MOM, as well as feeding this in the header files that are going to be used for the

application‟s implementation by the Deployment Manager. Based on these header files,

#define PHANTOM_PTHREADS_COMPS 3

…

#define PHANTOM_NUMOFCOMPS 3

…

static int phantom_source_id[PHANTOM_NUMOFCOMMS]={1,2};

static int phantom_target_id[PHANTOM_NUMOFCOMMS]={0,0};

static int

phantom_memtypemat[PHANTOM_NUMOFCOMMS]={phantom_localmem,phantom_loc

almem};

static int

phantom_comp_external_api[PHANTOM_NUMOFCOMPS]={phantom_Pthreads,phanto

m_Pthreads,phantom_Pthreads};

phantom_synchronize(&output_image_L,phantom_cmpid, phantom_commid);

{

 phantom_compx[phantom_cmpid]->ext_api = phantom_Pthreads;

pthread_mutex_lock(&phantom_pth_ready_mutex);

 …

}

D3.1 – First report on programmer- and productivity-oriented software tools

Page 18 Version 2.0 2 November 2017

Confidentiality: Public Distribution

the selection of a suitable communication library is performed to determine the best

communication API (OpenMP, MPI, CUDA, OpenCL) that will be used in the

deployment phase.

2.3.5.3 Early/Full Prototypes functionality

Early-First Year Prototype

Technique Selection is able to analyse the component network and the mapping of the

code components, in regard to the successful choice among the various communication

APIs.

Full Prototype and Next Steps

The fully developed TS will be able to insert lower level annotations, according to the

chosen API, for guiding the Deployment Manager to implement (in code) the

communication interfaces. A more complex and flexible algorithm will be used for

determining the best-suited library for the components‟ communication needs.

2.4 FPGAS

The final supported technique is component parallelisation and acceleration through the

use of FPGAs. The focus of the chosen approach is to ensure that modular compilation

can be supported by the PHANTOM platform, and that non-FPGA experts can

effectively exploit FPGAs that are present in the target architecture.

Creating FPGA designs is difficult, and requires the effort of a skilled hardware

designer. It is not yet currently possible to automatically generate high-quality FPGA

hardware from a software-based input, however, considerable work is being done in this

area. The Xilinx SDAccel [6] development environment attempts to map GPGPU-style

programs to FPGA designs, specifically transforming OpenCL programs. SDAccel does

not yet target Zynq devices, only FPGA hardware designs are created without

accompanying software. Zynq support is in development but not yet released. Similarly,

Altera/Intel are developing support for transforming OpenCL programs to their FPGA

systems. In both of these cases, the designed hardware is heavily restricted by the

OpenCL programming model, and the created designs are very similar to GPGPU-style

implementations. This is very effective for some algorithms, but a poor choice for

others. FPGA design experts are required to operate this software, because whilst they

automate some aspects of the design work, software to hardware high-level synthesis is

still in its infancy, and general C/C++ code translates rather poorly. It is necessary to

develop code specifically targeted for high-level synthesis rather than expecting it to

translate normal software projects to FPGA designs. These tools should be therefore

viewed as tools to improve the effectiveness of FPGA experts, rather than to allow non-

experts to use FPGAs.

The PHANTOM project does not attempt to repeat these efforts and aims to allow their

use as they become commercially-available. Instead, whilst the commercial tools catch

up in these areas, and in order to promote the use of FPGA platforms by non-experts,

custom IP cores will be developed manually for the Use Cases and an IP core

marketplace feature is developed. These IP cores ascribe to a common set of interfaces

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 19

Confidentiality: Public Distribution

defined in this project, and so allow the the PHANTOM platform to automatically

integrate varying sets of IP cores into new FPGA designs, thereby supporting a wide

range of different target FGPAs.

The PHANTOM platform supports acceleration on Xilinx Zynq FPGAs [5]. The Zynq

System on Chip is a multicore ARM device with a closely-coupled FPGA. This allows

standard ARM software (such as Linux) to run on the CPUs whilst custom hardware

executes within the reconfigurable logic. This means that for the purpose of the

PHANTOM project, an FPGA target is a multicore CPU with attached accelerator, the

same computation model as is used for the GPU target. An accelerated PHANTOM

component consists of not just an IP core, but the ARM software that reads its data and

processes the results.

In order to ensure that modular compilation of FPGA components is possible, it is

necessary to ensure that any interfaces for hardware and software are defined. These are

shown in Figure 2-12.

Figure 2-12: The interfaces in the PHANTOM FPGA architecture

There are two very low-level interfaces, which ideally would remain invisible to the end

user. Currently they must be exposed because automatic transformation to FPGAs is not

yet available and must be performed manually.

D3.1 – First report on programmer- and productivity-oriented software tools

Page 20 Version 2.0 2 November 2017

Confidentiality: Public Distribution

The PHANTOM IP API is used by the software part of the IP which is still executing on

the ARM core. This API is used to query the IP cores that are present on the FPGA,

start and stop their execution, and to pass data to and from them. This API is a Linux

userland API and is part of the Open Source release [7]. The current version of the API

can be found at https://github.com/PHANTOM-Platform/PHANTOM-FPGA-

Linux/tree/master/API.

The PHANTOM IP Hardware Interface defines the physical connections (wires) that a

valid IP core may include to be part of a valid design. This is described in the following

section.

2.4.1 PHANTOM Hardware Interface

It is often the case that multiple IP cores are to be hosted on the same physical FPGA.

For example, if multiple components have hardware implementations, the Multi-

Objective Mapper may choose to combine two or more IP cores. The platform therefore

must be able to automatically combine IP cores into a single FPGA design. It can do

this because IP cores are only allowed to have the following interfaces:

 One clock input. All IP cores run from the same system clock.

 One active-high reset line. This can be asserted by software running on the

ARM cores to reset the IP core.

 One active-high interrupt line. This is used by the IP core to signal the ARM

cores.

 One AXI Slave interface. This is a standard peripheral interface which allows

for low-speed communications between the Linux kernel running on the ARM

CPUs and the IP core.

 Between 0-4 AXI Master interfaces. This is a high-speed interface which allows

the IP core to read and write main system memory. This is useful for moving

data at high speed into and out of the IP core.

These interfaces are all standard, and follow the exact same format as IP cores

generated from Xilinx's own software. The software which combines IP cores into a

single architecture is part of the Linux software distribution. See its documentation for

further details.

2.4.2 Innovations beyond the state-of-the-art

2.4.2.1 Background technologies utilised in development

The IP cores developed make initial use of the FPGA vendor high-level synthesis tools

(Xilinx Vivado HLS) for hardware generation, but the base output is very inefficient so

significant modifications must be made to create an effective implementation.

That was the case of the development of the DWT (Discrete Wavelet Transform) IP

Core, which started by a generic C implementation as the input of Xilinx Vivado HLS.

Despite being generated a useable IP core, the performance was sub-par, so some

optimizations were needed to take fully-advantage of the usage of FPGA.

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 21

Confidentiality: Public Distribution

Taking the following table in consideration, it is possible to observe the magnitude of

optimization possible to be achieved by having a hardware engineer performing the

optimisation of the IP Core.

Table 3. Iterations of optimizations performed over the automatically generated DWT IP Core

This shows, the poor performance of the direct generation of IP cores by Vivado HLS.

And despite that human optimization not being a goal of the project, it clearly shows the

level of optimization that is possible to be achieved.

2.4.2.2 Summary of new technologies/extensions developed

Due to the inefficiency of vendor high-level synthesis tools, it was necessary to develop

interfaces to allow for modular FPGA composition of hardware components.

‘PHANTOM IP Cores’ were defined, which are IP cores that conform to the following

developed interfaces:

 A hardware interface which specifies the I/O for the IP core, including the bus

connections, and issues such as memory spaces, interrupts, and clock signals.

 A software interface which specifies how userland software in the PHANTOM

Linux distribution can interact with the IP core.

Design Pixels Time	(s)
Time/pixel	

(ns)

1 3686400 4.121374 1118

2 3686400 0.622383 169

3 3686400 0.548814 149

4 3686400 0.519238 141

5 3686400 0.469334 127

6 3686400 0.288320 78

7 3686400 0.289161 78

8 3686400 0.252271 68

9 58982400 2.991100 51

9 132710400 6.726555 51

10 132710400 5.56222 42

12 58982400 0.813501 14

13 132710400 1.188941 9

14 235929600 1.477583 6

15 235929600 1.187663 5

D3.1 – First report on programmer- and productivity-oriented software tools

Page 22 Version 2.0 2 November 2017

Confidentiality: Public Distribution

By conforming to these interfaces, the FPGA infrastructure described in D4.2 can

automatically create FPGA designs by integrating multiple PHANTOM IP cores,

without the developer having to use the FPGA vendor tools, or even to necessarily

know that the FPGAs are being targeted. This gives the platform the freedom to explore

different hardware mappings of components, as long as a suitable IP core exists. Also,

the use of a consistent interface ensures that once vendor high-level synthesis tools are

sufficient for truly automatic use, they can be seamlessly integrated into the platform to

auto-generate IP cores.

This created an additional step, and a challenge in the development of IP Cores, which

is the usage of PHANTOM interfaces. Which implies going from the typical approach

of FPGA/Linux integration which focus in AMBA (Advanced Microcontroller Bus

Architecture), to FPGA IP cores integration with Linux via Userspace I/O.

2.4.2.3 Early/Full Prototypes functionality

Early-First Year Prototype

 The IP core interfaces are defined and released.

 As described in deliverable D4.2, the PHANTOM platform includes an

implementation of the required hardware to software interface libraries, and of

the PHANTOM communications libraries to ensure that components can

communicate with the rest of the system.

 The platform also implements the automatic generation of hardware designs

from a list of PHANTOM IP cores.

Full Prototype and Next Steps

 Addition of more data movement primitives to the IP core software API to more

easily support efficient DMA.

 Further integration of hardware features related to security and additional

monitoring.

 Experiment with integration of vendor high-level synthesis tools (Xilinx Vivado

HLS) of the possibility to automatic generate (even with low performance)

PHANTOM compatible IP Cores.

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 23

Confidentiality: Public Distribution

3. PROGRAMMING INTERFACES

The programming interfaces assist the development of component-based applications,

include specific directives about parallelization, and describe functional and non-

functional requirements. The provided APIs use the C programming language, enabling

the incorporation of parallelization APIs (such as pthreads, OpenMPI, also described in

D4.1), whilst also providing an abstraction of the system architecture, hiding the com-

plexity between hardware and applications. Furthermore, the programming interfaces

will use the PHANTOM directives defined in D1.2 to forward the user-defined func-

tional and non-functional requirements to the implemented API functionalities. The de-

liverable D1.2 includes an initial description of the APIs and protocols that will be used

in the context of PHANTOM, whilst more protocols and APIs may be useful to be con-

sidered in the next steps of the API‟s implementation.

The first version of the programming interfaces is focused on the design and implemen-

tation of communication API functions for CPU and GPU platforms in relation to code

analysis and transformation operations developed in Section 2.2.5.1. Specifically, the

considered APIs are the following (defined in D1.2):

 Shared API (e.g. size_t phantom_slice_size(void *item);) for manipulating data

in the shared memory

 Queue API (e.g. bool phantom_queue_get(void *queue);) for manipulating

blocking FIFO data items in mainly distributed memories

 Signal API (e.g. bool phantom_notify(void *signal);) for coordination and exe-

cution of other components, without sharing any data

The low-level APIs that are considered by the above functions are the pthreads,

OpenMP, OpenMPI regarding CPU-CPU communication and CUDA regarding CPU-

GPU communication (see D4.1 for details). The design and implementation of the APIs

will be continuously refined and modified towards the Use Case requirements along

with the progress of the development process. To this purpose, the final implementation

of the APIs will be provided at the next deliverable of WP3, along with the rest of the

APIs, defined in D1.2.

3.1 USE CASE REQUIREMENTS

The programming interfaces are applied in all three PHANTOM Use Cases, which will

include them accordingly to the proposed Use Case applications, in order to provide the

development process with appropriate functionalities, for components‟ parallelization

and communication among the underlying heterogeneous infrastructure. In this direc-

tion, all PHANTOM Use cases will require:

Req. No. Requirement Overall Priority
U5 Support for multi-threaded concurrent tasks, including communica-

tion and synchronisation
SHALL

U7 Support for communications data-centric applications (e.g. automat-

ic scaling of components to the actual size of data to be processed)
SHALL

U8 Support for component-based application design SHALL

D3.1 – First report on programmer- and productivity-oriented software tools

Page 24 Version 2.0 2 November 2017

Confidentiality: Public Distribution

U19 Generation of target dependent parallel code for all mandatory

target platforms without user involvement when sufficient annota-

tions are provided.
SHALL

U20 Provision of constructs or abstractions to deal with non-uniform and

uniform memory, hiding the underlying data transfer details
SHALL

U21 Automation of the process of transferring data to/from different

memories according to the component data model
SHALL

U24 Provision of means for the developer to describe the composition of

hardware components and interactions for the target platform
SHALL

U28 Provision of a data model for specification of input and output data SHALL
U32 Support for application source code developed in C SHALL
U33 Support for higher level language such as Java and C++ MAY
U47 Support for Telecom specific application classes where domain-

specific libraries are commonly utilised
SHALL

U86 Support for application specific communication bus/protocols MAY

3.2 SHARED MEMORY API

3.2.1 Design Specifications

The shared API consists of functions for manipulating data stored in the shared

memory. As described in D1.2 PHANTOM provides the user with the ability to declare

a variable as shared via the appropriate phantom directive (i.e. #pragma phantom

shared etc.). Since PHANTOM does not provide automatic consistency, the developer

must call synchronization functions in order to update the shared variable in its latter

status. For this purpose, PHANTOM provides the following function:

bool phantom_synchronize(void *item); (1)

which causes the local view of the shared memory to be updated.

Furthermore, in case a component, along with its shared data, is parallelized in slices by

the Multi-Objective Mapper, PHANTOM provides the following function:

size_t phantom_slice_size(void *item); (2)

able to return the size (in elements) of the slice allocated to this component. This

function, when combined with the appropriate offset, can provide the data processing

(e.g. iteration) only between the targeted offset and the returned slice size.

3.2.2 Implementation Details

The main functionality of the Shared API is focused on the “synchronize” function

which is automatically implemented, according to the MOM‟s optimized deployment

plan and the Parallelization Toolset‟s Technique Selection. The selected API

implementation is then generated (or activated) by the Deployment Manager according

to the selected low-level API and the processor‟s type to which the component is

mapped (e.g. since the component with id=0 has phantom_Pthreads indication and its

processor type is CPU, the Deployment Manager will generate (or activate) the function

that executes mutex_lock(), update of shared variable and mutex unlock).

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 25

Confidentiality: Public Distribution

The first version of the synchronization function is provided in the following form:

bool phantom_synchronize(void **item, int phantom_cmpid,

int phantom_commid) (3)

Which includes the following inputs:

 item: the variable to be updated;

 phantom_cmpid: is the id of the current component. Used for lower-level API

generation/activation. Not modifiable by user or Phantom;

 phantom_commid: is the id of communication object. Technique selection will

replace it with actual value.

The following listing provides a first representation of the actual implementation,

without details, since this form may change and be refined according to the PHANTOM

development process:

Listing 3-1: First representation of PHANTOM synchronize function

Furthermore, Shared API includes the function that returns the components‟ slice size

and is currently implemented in the following form:

size_t phantom_slice_size(int compid); (4)

if (((ext_api == phantom_Pthreads))&&((dev_prc_type == PHANTOM_CPUSYS)))

 {

 pthread_mutex_lock(&phantom_pth_ready_mutex);

 //Update - global variable

 phantom_threadupdate_sync(item, phantom_cmpid, phantom_commid);

 pthread_mutex_unlock(&phantom_pth_ready_mutex);

 }

 else if (((ext_api == phantom_OpenMP))&&((dev_prc_type ==

PHANTOM_CPUSYS)))

 {

 #pragma omp critical

 {

 //Update - global variable

 phantom_threadupdate_sync(item, phantom_cmpid, phantom_commid);

 }

 //printf("phantom OpenMP\n");

 }

 else if (((ext_api == phantom_MPI))&&((dev_prc_type == PHANTOM_CPUSYS)))

 {

 MPI_Allgather(&item, comprsize, MPItype, &memvar, comprsize, MPItype,

MPI_COMM_WORLD);

 //printf("phantom MPI\n");

 }

D3.1 – First report on programmer- and productivity-oriented software tools

Page 26 Version 2.0 2 November 2017

Confidentiality: Public Distribution

The input of the function is the id of the component that is sliced. It is assumed that the

Parallelization Toolset‟s Techniques selection created specific variables that hold

information such as component‟s communication API and component‟s slice size. The

latter is called inside the phantom_slice_size() (e.g. temp_slice_size =

phantom_compx[cnum]->cmp_slice_size) which then returns the

component‟s size.

3.3 QUEUE API

3.3.1 Design Specifications

The Queue API offers the appropriate facilities that enable the user to manage the

communication between components that are mainly mapped to distributed memories

and are linked with specific communication objects in the form of queues. Specifically,

these queues have the form of blocking FIFOs of arbitrary size (see D1.2). The

functions of the Queue API provide the user with the ability to send or receive elements

and to count the number or size of the elements which are in the queue. The Queue API

functions addressed in the current stage are the following:

bool phantom_queue_get(void *queue); (5)

Used for pulling items from the queue:

bool phantom_queue_put(void *queue, void *item); (6)

Used for adding items to the queue:

uint32_t phantom_queue_count(void *queue); (7)

Used for counting the number of items currently in the queue:

3.3.2 Implementation Details

The implementation of the Queue API includes low-level communication APIs

targeting mappings of components to platforms with distributed physical memories,

while also considering functions able to handle thread-based APIs in case of mapping to

shared physical memories. The implementation of the Queue API functions changes

automatically, according to the platform that the communication is mapped. For

example, when components are mapped to different devices, they will have to use a

communication API supporting communication between distributed memories, such as

MPI, while in case the components are mapped in the same device, components could

use a low-overhead thread-based API such as pthreads (see D4.1 for further

information). The actual implementation of the functions is decided by the PT‟s

Technique Selection, using MOM‟s outcome and generated by the Deployment

Manager. The following paragraphs describe the first implementation of the Queue API

functions:

The function that is used to get data from a receiving queue is declared as follows:

bool phantom_queue_get(void **queue, int phantom_cmpid, int

phantom_commid); (8)

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 27

Confidentiality: Public Distribution

The inputs of the function are the following:

● Queue: The variable/ array/ structure to be retrieved from the received queue

● phantom_cmpid: id of the component that calls the function.

● phantom_commid: id of communication object (in relation to the optimized

deployment plan).

The first sample of the implementation is provided in the following listing, skipping

details from custom source code, since this form may change and refined according to

the PHANTOM development process:

Listing 3-2: First representation of PHANTOM queue get functionality

As depicted in the above listing, in case the component with id=1 has phantom_MPI

indication and its processor type is CPU, the Deployment Manager will activate or

replace the phantom_queue_get with the corresponding MPI_Recv(…) function to

receive the specified variable.

Similarly, the function to put data, to be sent over a queue is declared as follows:

bool phantom_queue_put(void **queue, int phantom_cmpid, int

phantom_commid); (9)

The phantom_queue_put() is implemented in a similar manner, where instead of

thread_get and MPI_Recv functionalities, the queue_put is using thread_put and

MPI_Send functions.

if ((ext_api == phantom_Pthreads))&&((dev_prc_type == PHANTOM_CPUSYS)))

{

 errlock = pthread_mutex_lock(&phantom_pth_ready_mutex);

 //update queue

 phantom_threadupdate_get(queue, phantom_cmpid, phantom_commid);

 errlock = pthread_mutex_unlock(&phantom_pth_ready_mutex);

}

else if (((ext_api == phantom_OpenMP))&&((dev_prc_type == PHANTOM_CPUSYS)))

{

 #pragma omp critical

 {

 phantom_threadupdate_get(queue, phantom_cmpid, phantom_commid);

 }

}

else if (((ext_api == phantom_MPI))&&((dev_prc_type == PHANTOM_CPUSYS)))

{

 MPI_Status phantom_mpi_status;

 MPI_Recv(&queue, comprsize, MPItype, src_id, phantom_commid,

MPI_COMM_WORLD, &phantom_mpi_status);

}

D3.1 – First report on programmer- and productivity-oriented software tools

Page 28 Version 2.0 2 November 2017

Confidentiality: Public Distribution

In addition, the function that provides the number of the items in a queue is declared as:

uint32_t phantom_queue_count(void **queue, int phantom_cmpid, int

phantom_commid

The inputs of the function are the following:

● Queue: The variable/ array/ structure to be checked for its size/number

● phantom_cmpid: id of the component that calls this function.

● phantom_commid: id of communication object (in relation to the optimized

deployment plan).

The following picture depicts a first representation of the function‟s implementation:

Listing 3-3: First representation of PHANTOM queue count functionality

if (((ext_api == phantom_Pthreads))&&((dev_prc_type == PHANTOM_CPUSYS)))

 {

 return phantom_chekccount(phantom_commobjx[phantom_commid]);

 //printf("phantom_Pthreads \n");

 }

 else if (((ext_api == phantom_OpenMP))&&((dev_prc_type ==

PHANTOM_CPUSYS)))

 {

 return phantom_chekccount(phantom_commobjx[phantom_commid]);

 //printf("phantom OpenMP\n");

 }

 else if (((ext_api == phantom_MPI))&&((phdev_prc_type == PHANTOM_CPUSYS)))

 {

 MPI_Status phantom_mpi_status;

 MPI_Get_elements(&phantom_mpi_status, phantom_commobjx[phantom_commid]-

>MPItype , &phantom_count);

 //printf("phantom MPI\n");

 }

uint32_t phantom_chekccount(void** item)

{

 int i=0;

 while(item[i]!=NULL)

 {

 i++;

 }

 return i;

}

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 29

Confidentiality: Public Distribution

3.4 SIGNAL API

3.4.1 Design Specifications

Apart from sharing and interchanging elements, PHANTOM includes the Signal API

which provides the user with signalling facilities, enabling the coordinated execution of

components and sections inside each component, without sending or receiving queues

or shared data. These Signal API functions also complement the functions of the Shared

and Queue API since they also need signalling to synchronize their execution, between

components. PHANTOM provides functions able to block and wait for specific signal,

which are unblocked by appropriate notify functions, as described in D1.2:

bool phantom_wait(void *signal); (10)

Blocks the current thread/process until the signal in question is notified.

bool phantom_notify(void *signal); 11)

Unblock a random single thread/process waiting on the signal.

bool phantom_notifyall(void *signal); (12)

Unblock all threads/processes waiting on the signal.

In addition, PHANTOM provides a barrier function able to wait until all threads or

processes, before that call have finished their work:

bool phantom_barrier(int component_id); (13)

3.4.2 Implementation Details

Since Signal API complements Shared and Queue API, it is implemented in a similar

automatic approach, based on the MOM‟s optimized deployment and the Technique

Selection decision which indicates the Deployment Manager for a specific low-level

signalling implementation. Specifically, the function that waits for a specific signal to

continue/unblock its operation has the following form:

bool phantom_wait(void *signal,int phantom_cmpid); (14)

The function consists of the following inputs:

 signal: The signal which will unblock the thread/process

 phantom_cmpid: the id of the component that calls the function

The function implementation is depicted in the following listing:

D3.1 – First report on programmer- and productivity-oriented software tools

Page 30 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Listing 3-4: First representation of PHANTOM wait functionality

It must be noted that the details are skipped for the sake of simplicity and because the

actual implementation will be modified according to the progress of the development

process.

Similarly, the function that unblocks a thread or process or a thread has the following

form:

bool phantom_notify(void *signal,int phantom_cmpid); (15)

with the following inputs:

 signal: The signal which will unblock the thread/process

 phantom_cmpid: the id of the component that calls the function

The function implementation is depicted in the following listing:

if (((phantom_compx[phantom_cmpid]->ext_api == phantom_Pthreads){

 pthread_mutex_lock(&phantom_pth_ready_mutex);

 while (phantom_pth_ready_signal==0) {

 pthread_cond_wait(&phantom_pth_ready_cond, &phantom_pth_ready_mutex);

 }

 pthread_mutex_unlock(&phantom_pth_ready_mutex);

}else if ((phantom_compx[phantom_cmpid]->ext_api == phantom_OpenMP){

#pragma omp critical

{

 #pragma omp flush(phantom_omp_thread_ready)

 while(phantom_omp_thread_ready==0)

 {

 #pragma omp flush(phantom_omp_thread_ready)

 }

} else if (((phantom_compx[phantom_cmpid]->ext_api == phantom_MPI)){

 MPI_Status phantom_mpi_status;

 MPI_Probe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &phantom_mpi_status);

}…

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 31

Confidentiality: Public Distribution

Listing 3-5: First representation of phantom_notify function

The phantom_notifyall is implemented in a similar manner, with minor modifications in

order to affect all the running threads or processes.

Furthermore, PHANTOM provides the barrier function

bool phantom_barrier(int component_id); (16)

which receives as input the id of the component which calls the function. This function

will hold the execution of a program up to the point that is called and wait until all

threads or processes, before that call have finished their work. The implementation of

the function is provided in the following listing:

if (((phantom_compx[phantom_cmpid]->ext_api == phan-

tom_Pthreads))&&((phantom_compx[phantom_cmpid]->dev_prc_type ==

PHANTOM_CPUSYS)))

 {

 pthread_mutex_lock(&phantom_pth_ready_mutex);

 pthread_cond_signal(&signal);

 pthread_mutex_unlock(&phantom_pth_ready_mutex);

 //printf("phantom_Pthreads \n");

 }

 else if (((phantom_compx[phantom_cmpid]->ext_api == phan-

tom_OpenMP))&&((phantom_compx[phantom_cmpid]->dev_prc_type ==

PHANTOM_CPUSYS))

 {

 phantom_omp_thread_ready=1;

 #pragma omp flush(phantom_omp_thread_ready)

 printf("phantom OpenMP #pragma omp critical \n");

 }

 else if (((phantom_compx[phantom_cmpid]->ext_api == phan-

tom_MPI))&&((phantom_compx[phantom_cmpid]->dev_prc_type ==

PHANTOM_CPUSYS)))

 {

 MPI_Send(&signal, 1, MPI_UNSIGNED_SHORT, phantom_commobjx[i]->trgt_id, i,

MPI_COMM_WORLD);

 }

 printf("phantom MPI\n");

D3.1 – First report on programmer- and productivity-oriented software tools

Page 32 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Listing 3-6: First representation of PHANTOM barrier function

3.5 PHANTOM API FOR CPU-GPU COMMUNICATION

This API is focused on the communication between host-CPU devices and the attached

GPUs, which are triggered and supplied with data from the host machine, operate in

their own environment, and return the required results back to the host machine. The

GPU operation cannot be interrupted by the host machine before it fulfills its operation,

thus its design includes some different parts from the aforementioned APIs, as further

described in the following paragraphs.

3.5.1 Design Specifications

The design of the CPU to GPU communication is inspired by existing GPU tools, such

as CUDA and OpenCL (see D4.1). In the context of PHANTOM, the programmer may

annotate a function of the component‟s source code, representing a component to be

executed inside a GPU, similar to the following figure:

if (((phantom_compx[phantom_cmpid]->ext_api == phan-

tom_Pthreads))&&((phantom_compx[phantom_cmpid]->dev_prc_type ==

PHANTOM_CPUSYS)))

 {

 pthread_mutex_lock(&phantom_pth_ready_mutex);

 pthread_cond_signal(&signal);

 pthread_mutex_unlock(&phantom_pth_ready_mutex);

 //printf("phantom_Pthreads \n");

 }

 else if (((phantom_compx[phantom_cmpid]->ext_api == phan-

tom_OpenMP))&&((phantom_compx[phantom_cmpid]->dev_prc_type ==

PHANTOM_CPUSYS))

 {

 phantom_omp_thread_ready=1;

 #pragma omp flush(phantom_omp_thread_ready)

 printf("phantom OpenMP #pragma omp critical \n");

 }

 else if (((phantom_compx[phantom_cmpid]->ext_api == phan-

tom_MPI))&&((phantom_compx[phantom_cmpid]->dev_prc_type ==

PHANTOM_CPUSYS)))

 {

 MPI_Send(&signal, 1, MPI_UNSIGNED_SHORT, phantom_commobjx[i]->trgt_id, i,

MPI_COMM_WORLD);

 }

 printf("phantom MPI\n");

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 33

Confidentiality: Public Distribution

Figure 3-1: High level representation of PHANTOM CPU-GPU API

The annotations are specific PHANTOM pragma directives that include information for

the function that will be executed in the GPU device. The function targeting GPU im-

plementation has to be in an appropriate form, aligned with the low-level GPU frame-

work that operates inside the GPU device. The GPU targeted version of the invoked

component may be provided by the user or the Parallelization Toolset, which will try to

make a GPU version. The Parallelization Toolset and the Deployment Manager are re-

sponsible for the selection and replacement of the PHANTOM directives with low-level

CPU-GPU communication functions (buffers).

3.5.2 Implementation Details

The PHANTOM CPU-GPU API includes the corresponding directives in the form of

PHANTOM pragmas and the low-level implementation which currently consists of

CUDA functions targeting NVIDIA GPUs.

The PHANTOM pragma directives are utilized for annotating a function as a GPU tar-

geted component (known also as Kernel), including information for the function that

will be executed in the GPU device. The current version of the GPU API consists of two

pragmas, one for declaring input and one for declaring output data, to/from the GPU

targeted function. The GPU targeted function is specified as phantom kernel:

The PHANTOM pragma for declaring an input to a PHANTOM kernel is represented

by the following command:

#pragma phantom kernel “function” kernelin “input variable”

type=”variable’s type” size=”variable’s size” (17)

This directive declares a GPU targeted function as a PHANTOM kernel will have the

following attributes:

 phantom kernel: the function that is targeted for potential GPU implementation

 kernelin: pragma specifier to indicate that the following variable is an input to

the gpu function

D3.1 – First report on programmer- and productivity-oriented software tools

Page 34 Version 2.0 2 November 2017

Confidentiality: Public Distribution

 type: the type of the input variable (needed at least for CUDA API)

 size: the size of the input variable (needed at least for CUDA API)

The PHANTOM pragma for declaring an input to a PHANTOM kernel is represented

by the following command:

#pragma phantom kernel “function” kernelout “output varia-

ble” type=”variable’s type” size=”variable’s size” (18)

This directive declares a GPU targeted function as a PHANTOM kernel with the follow-

ing attributes:

 phantom kernel: the function that is targeted for potential GPU implementation

 kernelout: pragma specifier to indicate that the following variable is an output of

the gpu function

 type: the type of the output variable (needed at least for CUDA API)

 size: the size of the output variable (needed at least for CUDA API)

These pragmas will be replaced by low-level GPU functions relative to the GPU

framework selected by Technique Selection. The current implementation considers the

CUDA functions which are exploited using the following procedure:

1. For each GPU pragma declaring an input variable generate appropriate GPU input

buffers, as described in the following example:

Listing 3-7: Example of GPU input variables and functions

2. For each GPU pragma declaring an output variable generate appropriate GPU output

buffers, as described in the following example:

Listing 3-8: Example of GPU output variables and functions

3. Generation of functions that forward the input variables to the GPU in parallel

streams:

Listing 3-9: Example of variable’s forwarding to the GPU device

int phantomgpu_size_in_0=64;

double *phantomgpu_dev_in_0=0;

cudaMalloc((void**)&phantomgpu_dev_in_0,phantomgpu_size_in_0*sizeof(double));

int phantomgpu_size_out_0=64;

double *phantomgpu_dev_out_0=0;

cudaMalloc((void**)&phantomgpu_dev_out_0,phantomgpu_size_out_0*sizeof(double));

int phantomgpu_size_in_0=64;

double *phantomgpu_dev_in_0=0;

cudaMalloc((void**)&phantomgpu_dev_in_0,phantomgpu_size_in_0*sizeof(double));

cudaStreamCreate(&stream[phantom_cmpid]);

cudaMemcpyAsync(phantomgpu_dev_in_0, simage, phantomg-

pu_size_in_0*sizeof(double), cudaMemcpyHostToDevice, stream[phantom_cmpid]);

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 35

Confidentiality: Public Distribution

4. Replacement of the GPU targeted function with its GPU Kernel form:

Listing 3-10: Example of CUDA_kernel function call

5. For each declared output variable generate appropriate GPU functions which retrieve

the GPU result:

Listing 3-11: Example of GPU functions which retrieve the GPU result

The aforementioned functions enable the triggering of the GPU kernel execution as well

as the data exchange between the host CPU machine and the GPU device. The form of

the kernel function will be specified by the user, the MOM and the Parallelization Tool-

set. This API can also be applied to devices, other than GPUs such as FPGAs that are

used as accelerators. The implementation of the CPU-GPU API is under progress at the

time of the deliverable. Further updates will follow, in the future steps of the develop-

ment process.

3.6 DEPENDENCIES/INTEGRATION

The Programming Interfaces are strongly related to the Programming Model from where

the APIs interact with the corresponding protocols and their variables. Then the

Programming Interfaces interact with the Parallelization Toolset and specifically with

the Technique Selection which selects the appropriate low-level communication API and

replaces specific attributes of the Programming API functions accordingly. In addition,

the Programming APIs also interact with the Multi-Objective Mapper, since the selected

low-level APIs are essentially derived by the MOM‟s optimized deployment plan.

Furthermore, the Programming Interfaces interact with the Deployment Manager, which

generate the low-level communication APIs according to the Technique Selection

directives.

3.7 DEMONSTRATOR/EXAMPLE USAGE

The programming APIs are strongly related to the Technique Selection and the

Deployment Manager‟s operation, since they provide important information about the

implementation and the generation of the selected APIs.

The following example demonstrates the Programming APIs operation. First, it is

assumed that the optimized deployment plan provided by MOM, describes the mapping

in the following figure:

gpufunction_CUDA_kernel <<<dimGrid, dimBlock, 0,

stream[phantom_cmpid]>>>(simage, simage2, output_image_L, output_image_L2);

cudaMemcpyAsync(output_image_L, phantomgpu_dev_out_0, phantomg-pu_size_out_0*

sizeof(double), cudaMemcpyDeviceToHost, stream[phantom_cmpid]);

D3.1 – First report on programmer- and productivity-oriented software tools

Page 36 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Figure 3-2: Mapping of components in Programming APIs demonstration

The application depicted in the above picture includes three components that communi-

cate with two logical buffers. The C source application includes a Component B which

expects data from A_1 , A_2 in order to produce a final summation. Component B

waits data from A_1 , A_2 and produces a final summation according to the following

listing.

Listing 3-12: Source code of Component B

The components are mapped to the same processor and use two local memories to send

and receive data. Technique selection decides (based on processor type (CPU) and

communication object type (local memory)) that each component will run in different

threads using pthreads. As described in section 2.2.5.1, TS generates the appropriate in-

formation in the PHANTOM API header files. Then a preliminary version of the De-

ployment Manager assigns the identified values to specific C structures from phantom.h

and initializes appropriate functionalities relative to pthreads API. Then it creates 3

int B(int phantom_cmpid){

…

 phantom_wait(&ready_filter, 0);

 phantom_synchronize(&output_image_L,phantom_cmpid, 0);

 /* PHANTOM Comment: Loop# 1 is-parallel:false */

 for (i=0; i<64; i ++)

 {

 final_output+=(((output_image_L[i]*i)/(i+2))+factor);

 }

 printf("final_output=%f from process_id=%d\n",final_output,phantom_cmpid);

…

}

int A(int phantom_cmpid){

…

 ready_filter=1;

if(phantom_cmpid==2){

phantom_notifyall(&ready_filter,1);

}

phantom_synchronize(&output_image_L,phantom_cmpid, 1);

…

}

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 37

Confidentiality: Public Distribution

threads, using pthread_create(), one for each component as specified by MOM and in-

dicated by TS. In this example PHANTOM API functions, such as phan-

tom_synchronize(), are not replaced by the pthread functions. Instead, they activate the

corresponding pthread functions as described in 3.2.2, 3.3.2, 3.4.2. Finally, the De-

ployment Manager finalizes the selected low-level communication API. In the case of

pthreads, the communication API is pthreads, thus the Deployment Manager finalizes

the operation by destroying mutexes, initiated for thread synchronization.

The demonstrated example is performed under Windows 10, on an Intel i7 processor

with 4 cores and 8 threads, with NVIDIA GTX 960M graphics card, and using the Net-

Beans IDE.

The following figure depicts the console messages provided by the three executed

threads:

Figure 3-3: Programming APIs example result

As depicted in the above figure, test results show that 3 threads were executed in paral-

lel and successfully synchronized their execution. Specifically, Thread „0‟ waited for a

notification from thread with compid „2‟, while Threads „1‟ and „2‟ performed their ex-

ecution and filled the appropriate portion of the shared variable. Thread „0‟ calculated a

specified final output based on synchronized shared variable only after it was notified

and unblocked.

3.8 INNOVATIONS BEYOND THE STATE-OF-THE-ART

3.8.1 Background technologies utilised in development

PHANTOM programming interfaces do not reuse existing interfaces, but deal with

software development of interfaces between interacting components building on top of

lower level communication APIs (such as pthreads, OpenMP, OpenMPI, CUDA,

OpenCL).

D3.1 – First report on programmer- and productivity-oriented software tools

Page 38 Version 2.0 2 November 2017

Confidentiality: Public Distribution

3.8.2 Summary of new technologies/extensions developed

The PHANTOM programming model is a superset of the standard C/C++ model, in

which components can be written using normal C/C++. The programming model is

primarily focused on supporting coordination and data sharing between components.

The programming interfaces assist in the development of component-based applications

and include specific directives about parallelization. The provided APIs use the C

programming language, enabling the incorporation of parallelization APIs (pthreads,

OpenMPI, OpenMP and CUDA also described in D4.1), whilst also providing an

abstraction of the system architecture, hiding the complexity between hardware and

applications. The programming interfaces are implemented using low-level

communication function calls of the selected by Technique Selection (after MOM‟s

decision) hardware-dependent communication APIs. More specifically the low-level

APIs that are considered are the pthreads, OpenMP, OpenMPI regarding CPU-CPU

communication; and CUDA, regarding CPU-GPU communication.

3.8.3 Early/Full Prototypes functionality

Early-First Year Prototype

The first version of the programming interfaces is focused on the design and

implementation of communication API functions for CPU and GPU platforms in

relation to code analysis and transformation operations developed in Section 2.3. These

programming interfaces have been already developed and tested in standalone proof-of-

concepts and not integrated in use case demonstrators for the first-year prototypes.

Full Prototype and Next Steps

The next steps of the Programming Interfaces include modifications and refinements of

the low-level communication APIs towards the integration with the PHANTOM Use

Cases. Regarding CPU-GPU communication, the current status includes the CUDA API

functions, while in the next steps include the incorporation of the OpenCL API. The

programming interfaces regarding communication with FPGAs are addressed in WP4

using MPI (section 6.3 in D4.2 and mainly planned for D4.3).

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 39

Confidentiality: Public Distribution

4. MODEL BASED TESTING

Model-Based Testing (MBT) formalizes and automates as many activities related to

testing as possible to increase both the efficiency and effectiveness when performing

testing tasks. Instead of writing a test case specification with hundreds of pages, MBT

automatically generates test cases from MBT models and then executes test cases to test

the system under test (SUT).

The objective of MBT in PHANTOM is to carry out black box testing for both use case

applications and individual components of applications on the PHANTOM platform

with a focus on global functional and non-functional properties of distributed and

parallel computing systems. Concretely the following three testing aspects will be

defined and implemented within the PHANTOM project.

1) Model validation: During the use case application design phase, MBT creates

models following use case specification documents describing the intended

implementation of use case applications. The model validation process automatically

generates simulation scenarios with necessary inputs to validate the MBT models and

highlight unexpected behaviours such as deadlocks or over-designing (parts of the

model never activated). This validates the intended implementation of use case

applications at a very early design phrase without running any tests against SUT.

2) Functional testing: To perform functional testing, MBT automatically generates test

cases from MBT models, stimulates applications/components with different test cases

on the PHANTOM platform with input data, and compares the observed output with the

expected output to decide if the tests pass or fail. In case that a test fails, feedback will

be reported to developers for checking.

3) Non-functional testing: Non-functional testing tests SUT by use of the same test

cases as functional testing but focuses more on performance results or other metrics. At

the end of test execution, we compare the monitored values of non-functional attributes

(e.g. execution time, energy consumption) with the system requirements to decide if the

performance (or power consumption, etc.) of the application or component is

satisfactory. In addition to this, non-functional testing is also used to automate processes

facilitating the development of PHANTOM platforms (e.g. by providing to the MOM

an initial reference mapping between application components and hardware) and use

case applications (e.g. by automating the testing process to study the performance

influence of application parameters). In addition to non-functional testing for

performance, new MBT technology will also be designed and developed to test the

correct implementation of PHANTOM security mechanism. This is achieved by

simulating the applications to request PHANTOM resources and execute over secured

environments; the security implantation in PHANTOM will be tested and validated by

comparing the expected and real security reactions.

4.1 USE CASE REQUIREMENTS

The use case requirements that MBT addresses in PHANTOM project is introduced in

Table 4-1. Model validation, functional testing and non-functional testing ensure that

the correct functioning of applications (U29) and APIs (U30), while the MBT workflow

D3.1 – First report on programmer- and productivity-oriented software tools

Page 40 Version 2.0 2 November 2017

Confidentiality: Public Distribution

introduced in section 4.2 along with the MBT open source toolchain section 4.3

provides an API for test implementation (U31).

Table 4-1: Use case requirements addressed by MBT

Req.

No.
Requirement

Overall

Priority

U29
PHANTOM should provide a means to test the correct functioning of the

application when it is mapped onto heterogeneous HW targets
SHOULD

U30
PHANTOM should provide mechanism to test the correct APIs imple-

mentation
SHOULD

U31
PHANTOM should provide an API for implementation of tests (similar

to JUnit for Java)
SHOULD

The three use case applications in the right columns (i.e. Surveillance use case by

GMV, Telecom use case by Intecs and HPC use case by HLRS) as well as their

composing components in PHANTOM are the main SUTs of MBT. Each of the three

use cases has identified several functional aspects (input, output, precondition and post

condition) to test in terms of specifications for the entire application as well as the

composing components; the current available specifications are briefly introduced as

follows and will be enriched along with the use case development process.

4.1.1 Surveillance specification

GMV develops and markets a surveillance system to provide added-value support to

maritime situational awareness via Earth Observation technologies. It is a fully

automatic and modular tool that permits detecting and categorising ships by combining

the information inferred from Synthetic Aperture Radar data with transponder-based

polls (such as the Automatic Identification System). The information from these

different sources is integrated and provided, as a service, through an advanced

GeoPortal web interface.

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 41

Confidentiality: Public Distribution

Figure 4-1: ShipDetection component chain

Currently, the new surveillance application defined using PHANTOM programming

model is named Ship Detection and has a number of components as illustrated in Figure

4-1; the way how components are composed is also illustrated in the same figure. The

functional specification of each component is summarized in Table 4-2.

Table 4-2: Functional specification of Surveillance Use Case

Application/

Component

Inputs Outputs

ShipDetection - &image

- ImageBounds

- coastlineSections

- Att: extracted metadata from image

- ShipReport

imdilate - &A: matrix of positive integer values

- &SE: structuring element object

- &B: matrix of dilated image

DetectSpots - coastlineSections

- &image

- MaskLand

- Miscellaneous

- SpotsT

- SpotsD

- MiscellaniousOut

dwt2 - &image - &cA: approximation coefficients matrix

- &cH: horizontal coefficients matrix

- &cV: vertical coefficients matrix

- &cD: diagonal coefficients matrix

idwt2 - &cA: approximation coefficients matrix

- &cH: horizontal coefficients matrix

- &cV: vertical coefficients matrix

- &cD: diagonal coefficients matrix

- &X: approx. and coefficients matrix

MaxLocal2D - &image

- max_spots

- Values: local maximum

- row_ind: Row indexes

- column_ind: Column indexes

MaxLocal - &image - Value: array of max values

D3.1 – First report on programmer- and productivity-oriented software tools

Page 42 Version 2.0 2 November 2017

Confidentiality: Public Distribution

- dim: matrix dimension to compute

- order: selection of sort type

- n_loc_max: maximum of local requested

- max_ind: array of the max indices

ClusterSpots

- ShipReportPre

- &image

- Spots: cluster of input report

- Values

- LoopIndex: index for storage decisions

- Detection: constant configuration

- SpotsTemp: clustering for input spots

4.1.2 Telecom specification

Intecs develops a system for Automatic Transmission Power Control (ATPC). ATPC

refers to a functionality supported by the high frequency radio circuits (rf) that allows to

control the power of the transmitted signal based on the received signal level on the

remote end antenna exchange via radio embedded ATPC protocol.

The ATPC application architecture is decomposed in a set of “atomic” components each

one activated at regular and specific time interval. Each component runs autonomously

on the base of the information from hardware or from shared areas as illustrated in

Figure 4-2.

set tx power
tx power

monitoring
rsl control

temperature

monitoring

demodulator

alarm
ber alarm

atpc

algorithm

Shared Data Area

each

1ms
each

100ms

each

20ms

each

100ms
each

100ms

each

1ms

each

10ms

Figure 4-2 Telecom Use Case Architecture

Table 4-3 identifies each component, the polling interval and provides a brief

description of its activity, highlighting the relevant input, output data (additional shared

data are detailed in the test cases, e.g. used for compensation, alarms, etc.) and alarms.

Table 4-3: Functional specification of Telecom Use Case

Component Poll (ms) Input Output Alarms

set tx power 1 txpwr_dac_val DAC(1)

tx power monitoring 100 ADC(3) detected_tx_pwr SQUELCH

TX_PWR

received signal level control 20 ADC(0) DAC(0)

ATPC_TX_REG

ATPC_TX_EN

RX_PWR

temperature monitoring 100 INT_TEMP TEMP

demodulator alarm 100 MODEM_CPM_BER DEM

ber alarm 1 MODEM_CPM_BER microinter_CNT

atpc algorithm 10 ATPC_RX_READY

ATPC_RX_REG

txpwr_dac_val ATPC_LOOP

RX_REM_PWR

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 43

Confidentiality: Public Distribution

4.1.3 HPC specification

HLRS develops a platform for dynamic simulation of complex physical processes in

industrial technological objects. The dynamic PHANTOM platform will take as input

the real live data streams that can be obtained from the sensors, deployed in the

technological objects as parts of their automated control system. Leveraging the real-

time capabilities of the PHANTOM development framework along with the complex

models provided by the experts of the targeted domain, the dynamic simulation platform

development will result in a unique solution that is not yet available on the market.

Figure 4-3 illustrates all components of HPC application and the dependencies, while

the available component specification is summarized in Table 4-4 and will be enriched

along with the development process.

Figure 4-3: HPC application components and dependencies

Table 4-4: Functional specification of HPC Use Case

Application/

Component

Inputs Output

A1.1 – Roadway H – the Depression (difference of pres-

sures) at the borders of the element (Pa)

r – the aerodynamic resistance of the

local control unit / regulator (Ns
2
/m

8
)

Q – the airflow through the ele-

ment (m
3
/s)

A3.1 – Allotment with-

out air wastage

H – the Depression (difference of pres-

sures) at the borders of the element (Pa)

r – the aerodynamic resistance of the

local control unit / regulator (Ns
2
/m

8
)

Q – the airflow through the ele-

ment (m
3
/s)

D3.1 – First report on programmer- and productivity-oriented software tools

Page 44 Version 2.0 2 November 2017

Confidentiality: Public Distribution

A3.2 – Allotment with

air wastage

H – the Depression (difference of pres-

sures) at the borders of the element (Pa)

r – the aerodynamic resistance of the

local control unit / regulator (Ns
2
/m

8
)

Q – the airflow through the

roadway and the gateway (m
3
/s)

QS – the airflow through the

face (m
3
/s)

q – the airflow through the goaf

/ filtration area (m
3
/s)

4.2 DESIGN SPECIFICATIONS

Model-based testing is an application of model-based design for generating test cases

and executing them against SUT for testing purposes. In PHANTOM, the MBT

processes are designed and implemented in four steps as shown in Figure 4-4.

Figure 4-4: PHANTOM MBT workflow

Step 1. Creation of MBT Models. In the first step, we create MBT models from use

case specifications. The specifications define the testing requirements or the aspects to

test of SUT (e.g., functions, behaviours and performances). The created MBT models

represent high-level abstractions of SUT and are described by formal languages or

notations such as UML, PetriNet and BMPN. In PHANTOM, communicative state

machine, as the input of the open source MBT tool DIVERSITY [16], is used for the

creation of MBT models. Rationale for these decisions is given in section 4.6.

 Input: use case specification documents

 Output: MBT models

Step 2. Generation of Test Cases. The second step automatically generates abstract

test cases from MBT models when applying the test selection criteria. Test selection

criteria guide the generation process by indicating the interesting focus to test, such as

certain functions of the SUT or the structure of the MBT model (e.g. state coverage,

transition coverage and data flow coverage). In PHANTOM, we apply different criteria

to the same MBT model to generate different sets of test cases for either functional or

non-functional testing.

 Input: MBT models, test selection criteria

 Output: abstract test cases

Step 3. Concretization of Test Cases. The third step concretizes the abstract test cases

from step 2 to executable test cases by use of codec/decodec with mappings between the

abstraction in MBT models and system implementation details. Executable test cases

contain low-level implementation details and can be directly executed against SUT.

 Input: abstract test cases, codec/decodec

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 45

Confidentiality: Public Distribution

 Output: concrete test cases

Step 4. Execution of Test Cases. The executable test cases are automatically executed

against SUT. To automate test execution, system adapters are required to provide

channels connecting SUT with the test execution environment. During the execution,

SUT is stimulated by inputs from each test case, and the outputs of SUT are collected to

generate test verdicts indicating if a test passes or fails (or is inconclusive). In addition,

non-functional information (e.g., execution time, energy consumption) is collected to

analyse system performance and facilitate the development process. At last, testing

results are reported to developers.

 Input: executable test cases, system adapters

 Output: test verdicts, non-functional information

The four steps are performed iteratively and incrementally. This means that the MBT

activity starts with a basic MBT model containing a few model elements, and generates

a small number of test cases to validate a partial implementation of implemented

applications. Once the development of applications has further advanced, the MBT

models are extended to cover more requirements, and generates more test cases for

execution. The MBT process in PHANTOM implements this iterative and incremental

approach, helping to guarantee full alignment with the test objectives and to keep MBT

modelling activities efficient. The MBT process thus starts in the very early stage in

parallel with the application development and assists the developers through the entire
development process.

4.3 IMPLEMENTATION DETAILS

In order to realize the MBT workflow introduced above, MBT components are

developed and MBT tools are used in the implementation. Figure 4-5 presents a

summary of MBT components developed in PHANTOM (i.e., MBT Models, TTCN-3

Publisher, Codecs/Decodecs and System Adapters) and tool support for MBT workflow

(i.e., Test Generation Tool and Compilation&Execution Tool).

Figure 4-5 MBT Component Development and Tool Support

The functions of MBT components developed in PHANTOM are introduced as follows,

while the two tools used to support the MBT workflow, i.e., DIVERSITY [16] and

D3.1 – First report on programmer- and productivity-oriented software tools

Page 46 Version 2.0 2 November 2017

Confidentiality: Public Distribution

TITAN [19] respectively for test generation and compilation&execution, are introduced

in section 4.6.1.

 MBT Models: MBT models are created following application specification and provide

an abstraction of structures and behaviours of the intended implementation. They are

specific to applications (i.e., telecom, surveillance and HPC) and testing aspects (e.g.,

functional testing, non-functional testing).

 TTCN-3 Publisher: The primary function of TTCN-3 publisher is to transform test

cases in other formats (e.g., JUnit, XML) to the standard language TTCN-3; when

dealing with test cases generated in TTCN-3 format, TTCN-3 publisher further

improves the test cases with bug correction and better modulization.

 Codecs/Decodecs: Codec/Decodec transforms the abstract test cases to executable ones

by providing mappings between the abstraction in MBT models and application

implementation details. Codec/Decodec is specific to MBT model.

 System Adapter: System adapters support automatic test execution by providing

channels for connecting SUT with the test execution environment and data exchange.

System Adapter is specific to applications (i.e., telecom, surveillance and HPC) and

running environments.

Table 4-5 presents the so far developed MBT components in PHANTOM, in which all

components are use case specific except the TTCN-3 publisher applicable for all three

use cases.

Table 4-5 MBT components developed in PHANTOM

 Telecom HPC Surveillance

MBT

Components

MBT Models MBT Models MBT Models

TTCN-3 Publisher

Codec/Decodec Codec/Decodec Codec/Decodec

System Adapter for Linux System Adapter for Linux System Adapter for Linux

System Adapter for ZedBoard

Table 4-6 summarizes the MBT implementation status in PHANTOM regarding the

three MBT aspects and four MBT steps introduced above. Generally, MBT components

are developed and the entire MBT workflow is realized. Model validation and

functional testing have been conducted for the latest version of all three use case

applications, while part of non-functional testing has been done for HPC use case.

Table 4-6 MBT Implementation in PHANTOM

 Telecom HPC Surveillance

MBT workflow

 Step 1 √ √ √

 Step 2 √ √ √

 Step 3 √ √ √

 Step 4 √ √ √

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 47

Confidentiality: Public Distribution

 * for the latest UC applications

In the following part of this section, we introduce the details of MBT components

developed in PHANTOM; in the next section, we introduce the execution

demonstration with testing results.

4.3.1 MBT models

Following the specifications (briefly introduced in section 4.1), we have created MBT

models for each use case. Generally, the telecom use case application is function-driven

in which a number of control flows dominate the application and the MBT models for

telecom use case contain a number of states and transitions correspondent with the

application control flows; while the surveillance and HPC use cases are data-driven in

which applications focus more on data flow to take inputs and generate outputs and thus

the MBT models for the two use cases are rather simple with input and output data

relations.

MBT models are created based on the metamodel “communicative state machine” in

xLIA language (eXecutable Language for Interaction & Assemblage). Communicative

state machine is an extension of UML state machine to take into account the

communications among internal components and parallel architecture in PHANTOM.

The MBT models are created in a textual environment by xLIA language; in order to

better present the MBT models, Figure 4-6, Figure 4-7 and Figure 4-8 respectively

illustrate the graphical visualization of MBT models for Telecom, Surveillance and

HPC use cases. However, the MBT models for Telecom and HPC use cases are too big

to present all the details in one page, so in Figure 4-6 and Figure 4-8 we present a global

view of the models in the first half of the figure while a zoom view with details in the

second half.

MBT aspects

 Model Validation √ √ √

 Functional Testing √ √ √

 Non-Functional Testing … (√) …

D3.1 – First report on programmer- and productivity-oriented software tools

Page 48 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Figure 4-6 MBT models for telecom use case

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 49

Confidentiality: Public Distribution

Figure 4-7: MBT models for surveillance use case

Figure 4-8 MBT models for HPC use case

Current MBT models for telecom and surveillance use cases are function-centric, and

MBT model for HPC use case contains both functional testing and non-functional

testing. MBT conducts functional testing, non-functional testing as well as model

validation for both data-driven and function-driven systems in PHANTOM. The

emphasis on non-functional testing is being put on data driven applications i.e., HPC

and surveillance use cases, to further investigate other possibilities how MBT facilitates

the development process by providing execution related non-functional information

with developers. This aspect has been identified and is presented in section 4.6.

D3.1 – First report on programmer- and productivity-oriented software tools

Page 50 Version 2.0 2 November 2017

Confidentiality: Public Distribution

4.3.2 Generated Test cases

The test cases in TTCN-3 are then generated from the test generation tool DIVERSITY

by applying selection criteria to MBT models. At the current stage, we model

specifications as state machines with states and transitions, and we use the transition

coverage as the selection criteria to generate test cases in order to cover all transitions

and test all aspects in specifications. Figure 4-9 shows the extraction of the generated

telecom test cases (top left), HPC test cases (top right) and surveillance test cases

(bottom). Figure 4-7 summarizes the test case generation results.

Figure 4-9: Test cases generated from telecom, surveillance and HPC models

Table 4-7: Summary of test case generation

 Telecom Surveillance HPC

Number of state machie 8 1 1

Number of test cases 60 1 9

Transition coverage 100% 100% 100%

The table rows illustrate, for each use case, the number of state machines created in the

MBT models, the number of test cases generated from models and the transition

coverage for each MBT model. 100% transition coverage indicates that all current

testing requirements defined in the specification documents are covered by the

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 51

Confidentiality: Public Distribution

generated test cases and the execution of the tests will be able to test all expected

aspects. Currently surveillance use case has only 1 test case, because it does not yet

support the execution of individual component but only entire application; on the other

hand, the output of each component from surveillance use case is recorded during the

application execution, and thus MBT is able to take into account the outputs of all

components and application with only one test case and test both components and use

case application. The MBT models and the test cases will continue to be enriched along

with the application development and the enrichment of non-functional testing

strategies.

As an open source tool for test generation, DIVERISTY is powerful for its generation

algorithm, i.e., symbolic execution [18], but also comes with some limitations (e.g., lack

of documentation). Particularly, the TTCN-3 format that DIVERSITY used doesn‟t

fully align with the ETSI (European Telecommunications Standards Institute) standard

specification of TTCN-3, and the generated test cases contain grammatical errors. Thus,

the test generation is further assisted by the MBT component TTCN-3 publisher for

error correction and better modulization, which is introduced as follows.

4.3.3 TTCN-3 Publisher

TTCN-3 Publisher is a MBT component developed in PHANTOM in Java for all use

cases. The primary function of TTCN-3 publisher is to transform test cases in other

formats (e.g., JUnit, Perl) to standard testing language TTCN-3 [17]; when dealing with

test cases already generated in TTCN-3 format, TTCN-3 publisher further improves the

test cases with bug correction and better modulization.

TTCN-3 publisher takes test cases generated from DIVERISTY as input, corrects

grammatical errors and further improves the modulization of test cases to better manage

test complexity. For illustration purpose, Figure 4-10 presents the development interface

of TTCN-3 Publisher; Figure 4-11 shows an extraction of test cases generated by

DIVERSITY and Figure 4-12 shows an extraction of test cases improved by TTCN-3

Publisher with bug correction, details of application abstraction, and modulization.

D3.1 – First report on programmer- and productivity-oriented software tools

Page 52 Version 2.0 2 November 2017

Confidentiality: Public Distribution

Figure 4-10 TTCN-3 Publisher Implementation

Figure 4-11 Extraction of Test Cases Generated by DIVERSITY

Figure 4-12 Extraction of Test Cases Improved by TTCN-3 Publisher

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 53

Confidentiality: Public Distribution

4.3.4 Codec/Decodec

Codec/Decodec provides the function to transform abstract test cases to executable ones

by providing mappings between the abstraction in MBT models and real testing data.

Codec/Decodec is specific to MBT model and the relative generated test cases.

The following three Codecs/Decodecs have been developed in TTCN-3 so far in

PHANTOM to support the concretization of test cases for three use case applications.

 Codec/Decodec for Telecom application test cases

 Codec/Decodec for HPC application test cases

 Codec/Decodec for Surveillance application test cases

For illustration purpose, Figure 4-13 presents an extraction of the TTCN-3 code of

Codec/Decodec for HPC application test cases.

Figure 4-13 TTCN-3 Code Extraction for HPC Codec/Decodec

4.3.5 System Adapter

System adapter provides communication channels to automatically execute test cases by

connecting SUT with the test execution environment and data exchange. Generally,

system adapter is specific to applications (i.e., Telecom, HPC, Surveillance) and

running environments; in PHANTOM project, PHANTOM platform will eventually

D3.1 – First report on programmer- and productivity-oriented software tools

Page 54 Version 2.0 2 November 2017

Confidentiality: Public Distribution

provide an abstraction over different applications and running environments, and thus a

unified application-agnostic and environment-agnostic interface for users and testers.

For the time being, since the PHANTOM interface for use case applications is not fully

available yet, the following four system adapters have been developed in TTCN-3 and

C++ to enable early test of use case applications and support the test execution for

applications over different environments.

 System Adapter for Telecom Application over standard Linux

 System Adapter for Telecom Application over ZedBoard

 System Adapter for HPC Application over standard Linux

 System Adapter for Surveillance Application over standard Linux

Once the PHANTOM interface for use case applications is available, the MBT system

adapter for PHANTOM interface will be developed to test applications integrated in

PHANTOM platform over distributed computing environments.

For illustration purpose, Figure 4-13 presents the code extraction of the system adapter

for telecom application over ZedBoard.

Figure 4-14 Code Extraction for Telecom System Adapter over ZedBoard

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 55

Confidentiality: Public Distribution

4.3.1 Implementation Summary

Regarding the latest applications of three use cases introduced in section 4.1, the end-to-

end MBT process has been implemented:

1) MBT models have been created respectively for three use case applications;

2) Test cases haven generated covering 100% of the expected testing aspects;

3) TTCN-3 publisher has been developed to improve the generated test cases;

4) Codecs/Decodecs have been developed to concretize test cases;

5) System adapters have been developed to enable automatic test execution;

6) Test cases have been executed and testing results have been provided to use case

partners.

The next section presents the execution demonstration with testing results.

4.4 DEMONSTRATION AND TESTING RESULTS

MBT has been conducted for the latest version of three use applications with the

following three aspects:

 Model validation: early model validation indicates that the intended

implementations of the three use case applications do not contain deadlock nor

over design.

 Functional Testing: functional testing has found different implementation

defects of the three use case applications, which can be broadly divided into two

categories: a) functions are not correctly implemented, and b) application

interfaces (e.g., data formats) are not aligned with specification. Functional

testing results have been sent to partners and the corresponding debugs are over

(for HPC and surveillance use cases) or ongoing (for telecom use case).

 Non-functional testing: Non-functional testing has been so far conducted on

HPC use case to study the relation between parameter value and simulation

steps. This progress is automated and accelerated by MBT in the way that MBT

model generates test cases with different values of the same parameter, executes

the application a number of times and collects simulations results on parameter

values. Non-functional testing will be the main focus point MBT during the

project‟s third year including security testing and performance testing with

monitoring framework and MOM.

In addition to this, MBT for PHANTOM security is being designed to test the security

implementation in PHANTOM; this is achieved by simulating the application activities

to request resources and execute over secured environment, which will be another main

focus of MBT work in the third year.

D3.1 – First report on programmer- and productivity-oriented software tools

Page 56 Version 2.0 2 November 2017

Confidentiality: Public Distribution

For illustration purpose, Figure 4-15, Figure 4-16 and Figure 4-17 respectively illustrate

the model validation result for surveillance application, the functional testing results for

telecom application and non-functional results for HPC application.

Figure 4-15 Model Validation Result for GMV application

Figure 4-16 Functional Testing Result of Telecom application

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 57

Confidentiality: Public Distribution

Figure 4-17 Non-functional Testing Result of HPC application

From the three figures above we can see that,

1) model validation of GMV application indicates no overdesign or deadlock in the

intended implementation;

2) 46/60 test cases pass for functional testing on telecom use case. For the failed tests,

MBT keeps traces to associate elements from specifications to MBT models and

then to test cases for later debug.

3) Non-functional testing results of HPC application contain 6 diagrams on three

physical configurations (i.e., C1, C2 and C3) with total 600 simulations with

different input parameter values. The x axis represents the value of the parameter h;

the y axis represents the total simulation steps when given different h value. The two

diagrams on top, in the middle and at the bottom respectively relate to C1, C2 and

C3. The three diagrams in the left side provides a normal granularity with one

hundred h values from 0.01 to 10, and the three diagrams in the right side provides a

refined granularity with one hundred h values for each configuration.

D3.1 – First report on programmer- and productivity-oriented software tools

Page 58 Version 2.0 2 November 2017

Confidentiality: Public Distribution

4.5 DEPENDENCIES/INTEGRATION

In addition to developing model based testing solutions, progress has also been made in

integration between MBT and the PHANTOM platform. This section introduces the

integration objectives to address, the identified PHANTOM interfaces and the MBT

interaction flow with PHANTOM platform when executing tests.

4.5.1 Integration objectives

The three following objectives are identified as the key points for integration at the

current stage, and the objectives are addressed in the integration plan in the following

sections.

Objective 1: To identify the interactions between the MBT workflow and the

PHANTOM architecture modules (i.e. MOM, Deployment Manager, Monitoring

Framework and Repository).

MBT calls the Deployment Manager to conduct tests on different HW, get functional

and non-functional information from the repository and monitoring framework, and

provide testing results for the MOM as references. It is thus necessary to identify the

interaction patterns between MBT and PHANTOM modules.

Objective 2: To define the interfaces to communicate with use case applications in

PHANTOM.

Use case developers intend to use PHANTOM native interfaces to send input to

application and get back output data. It is useful for MBT to identify PHANTOM

interfaces for use case applications in PHANTOM for testing purposes.

Objective 3: To identity the deployment plan to test both an application and the

components from which it is composed.

When an application is deployed in the PHANTOM platform, MBT needs to test both

the entire application and its individual components. Therefore, it is necessary to

identify the deployment plans in PHANTOM to execute either an application or only

one individual component.

4.5.2 PHANTOM platform interfaces

The PHANTOM platform will have one REST server as the first Repository interface

(among others) for both testing and real applications, which allows developers, testers

and users to send and receive necessary information for task execution. The necessary

information sent and received via REST server is stored in the PHANTOM repository

and includes (but is not limited to):

 The Platform Description, which describes all deployed HW in PHANTOM

platform;

 The Component Network, which describes all software components of an

application and the ways how the components are connected;

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 59

Confidentiality: Public Distribution

 The Deployment Plan, which describes the execution mapping between the

Platform Description and Component Network;

 Input/Output data;

 Start Trigger and end signal of execution.

MBT can be in charge of manually starting the server by running a script, or

PHANTOM can keep the server running when the platform is started.

In addition to REST interfaces, two other interfaces a) local/cloud file storage, and b)

TCP/IP for local connections are also considered in PHANTOM.

4.5.3 MBT interaction flow with PHANTOM

The general interaction flow between MBT and the PHANTOM platform is identified

as follows, and is used as a reference to guide the process when MBT executes tests on

PHANTOM platform.

Step 1. MBT firstly gets from REST sever a) PlatformDescription.xml, and b)

ComponentNetwork.xml.

Step 2. MBT sends ComponentNetwork.xml and DeploymentPlan.xml to the REST

server. Sending ComponentNetwork.xml is optional, and it is only necessary when

MBT tests individual component instead of the whole application: in this case, the

ComponentNetwork.xml contains only description about one component and

PHANTOM will use the new received ComponentNetwork.xml to deploy components

to be executed. Sending DeploymentPlan.xml is also optional, and it is only necessary

when MBT force the mapping between a component task and a certain hardware: in this

case, the MOM takes into account the received DeploymentPlan.xml when mapping

tasks to HW.

Step 3. MBT sends input data to the REST server.

Step 4. MBT sends the start trigger of execution to the REST server, and the platform

starts the execution of application/components.

Step 5. Once the execution is over, the platform sends back to a) end signal of

execution, and b) output data. In case the output data is too large (e.g. a large image),

the location where output data is stored will be sent back instead.

Step 6. MBT gets non-functional information from the REST server. This step is

necessary when non-functional testing is performed.

Step 7. MBT sends non-functional testing results to the REST server in order to be

considered by the MOM. This step is optional and it is only necessary at the early stage

when the MOM requires an initial mapping reference from MBT regarding the

performance information between computing tasks and HW.

D3.1 – First report on programmer- and productivity-oriented software tools

Page 60 Version 2.0 2 November 2017

Confidentiality: Public Distribution

4.6 INNOVATIONS BEYOND THE STATE-OF-THE-ART (EGM)

Based on the design and implementation of MBT in PHANTOM, EGM is under the

preparation of an innovation patent. Within the PHANTOM project, model validation

and MBT component development are in parallel with the development of use case

applications to enable early validation intended implementations and later testing, while

test execution is conducted right after the applications are ready to execute.

4.6.1 Background technologies utilised in development

In addition to the MBT components developed in PHANTOM, two tools are also used

to achieve the MBT workflow, i.e. DIVERSITY for test generation (step 2) and TITAN

for test compilation and execution (step 4).

DIVERSITY [16] is an open-source Eclipse based tool for formal analysis. It takes

FSM models defined in xLIA (eXecutable Language for Interaction & Assemblage)

[16] as input and generates test cases in TTCN-3 [17] following three selection criteria

(i.e. exploration, transition coverage and behaviour selection). TTCN-3 is a

standardized testing language with multiple testing purpose support (e.g. real-time

support, distributed testing support) developed by ETSI (European Telecommunication

Standards Institute). Furthermore, symbolic execution algorithm [18] is used by

DIVERSITY to use symbolic parameters for inputs rather than numerical values to

generate multiple test cases at the same time and more efficiently explore available test

cases. DIVERSITY also provides functionality for MBT model validation to detect

unexpected behaviours of SUT in the design time. However, as mentioned before, the

TTCN-3 format that DIVERSITY uses doesn‟t fully align with the ETSI standard

specification, and the generated test cases contain grammatical errors. Thus, it is

necessary to develop the TTCN-3 publisher to improve the test cases generated by

DIVERSITY and support the test execution in PHANTOM.

TITAN [19] is a TTCN-3 compilation and execution environment with an Eclipse-

based IDE supporting both functional and non-functional testing as well as result

reporting. In design time, it is able to generate C++ code from TTCN-3 for further test

development and instrument the generated C++ code for future execution; in the

runtime, it keeps up running the SUT, in case of a runtime error, TITAN runtime

control cleans up the test system, assigns an “error” verdict to the given test case and

starts execution of the next test case. Together with TITAN, a toolbox containing

support for numerous protocols and several system adapters are also released to open

source.

In PHANTOM, we chose DIVERSITY and TITAN to support MBT development due

to three main reasons as follows:

 Open source tool: both DIVERSITY and TITAN are open source tools with high

flexibility for test design and maintaining, free and easy to use, security and

potential customizability for extensions.

 Support of TTCN-3 based test cases: as a global standard testing language,

TTCN-3 has the advantage of multi-purpose testing support compared to other

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 61

Confidentiality: Public Distribution

testing languages such as real-time support and distributed execution support,

which highly align with the testing requirements and challenges in PHAMTOM

distributed embedded environment.

 Symbolic execution: DIVERSITY uses symbolic execution to facilitate the

MBT modelling and test generation process while improving the MBT

efficiency and performance.

In the current phase, DIVERSITY and Titan covers most of our testing requirements in

PHANTOM; on the other hand, some disadvantages (e.g. lack of graphical interface and

documentation) in DIVERSITY still exist. Whilst developing MBT solutions by use of

DIVERSITY and TITAN, we are also exploring other potential MBT tools (preferably

open source ones) to extend MBT activities in PHANTOM.

4.6.2 Summary of new technologies/extensions developed

As illustrated in Table 4-5, 11 MBT components have been developed in PHANTOM

for both functional and non-functional testing of use case applications, including:

 MBT Models in xLIA for telecom, HPC and surveillance applications. The

MBT models we developed are based on communicative state machine, an

extension of state machine, to take into account parallel architecture and

communication between components of PHANTOM applications.

 TTCN-3 Publisher in Java for all test cases. The TTCN-3 publisher provides

functions of format conversion, bug fix and better modulization to better manage

test complexity in PHANTOM.

 Codecs/Decodecs in TTCN-3 for all three uses cases.

 System Adapters in TTCN-3 and C++ for all three use cases on Linux as well

as another system adapter for telecom use case on ZedBoard.

The MBT components developed in PHANTOM are reusable for further test of specific

applications and will also be updated and enriched along with the development and

integration activities of PHANTOM.

Based on the components developed in PHANTOM, model validation is designed and

conducted to test the intended implementations in an early stage before executing

applications. Among functional and non-functional testing for use cases, non-functional

testing for parameter study in HLRS application is an extension since the MBT does not

only generate the test cases but the testing data as well, to support the automatic

execution of the same applications for hundreds of times with different input parameter

values.

Based on the design and implementation of MBT in PHANTOM, EGM is under the

preparation of an innovation patent.

D3.1 – First report on programmer- and productivity-oriented software tools

Page 62 Version 2.0 2 November 2017

Confidentiality: Public Distribution

4.6.3 Early/Full Prototypes functionality

Early-First Year Prototype

As summarized in Table 4-6, the MBT workflow in Figure 4-4 has been implemented

covering all steps, and the following functionalities of MBT in PHANTOM have been

developed and demonstrated during the M18 EC Review.

 Model Validation for telecom, HPC and surveillance use case applications.

 Functional Testing for telecom, HPC and surveillance use case applications.

 Non-functional testing for HPC use case applications.

Full Prototype and Next Steps

The following points are currently under investigation and development, and will be

delivered in D3.2 in 2018.

 Performance Testing. Performance testing, as an aspect of non-functional

testing, will focus on the non-functional requirements of use case applications,

and interacts with Monitoring framework to execute applications/components

and get performance information to evaluate if the non-functional requirements

of use case applications are correctly implemented and satisfied.

 Security Testing. Security testing, as an aspect of non-functional testing, will

focus on testing the implementation of access control mechanism over

PHANTOM. MBT simulates the application/component behaviours and sends

access requests to PHANTOM security server, and then testing results are

generated by comparing the access authorization replies to the predefined access

control policies.

 MBT-MOM interaction. MBT will provide a specific strategy to provide

mapping references with PHANTOM MOM. At the early stage, the MOM

requires an initial mapping reference from MBT regarding the performance

information between computing tasks and HW. This initial reference will be

provided by the ongoing development of the specific MBT-MOM strategy

introduced in D2.1.

 Early Testing in PHANTOM. In addition to model validation, we are

designing another early testing strategy to enable developers to test very early in

the life cycle system their application performance over PHANTOM system.

The general idea is to take advantage of the component-based characteristics of

PHANTOM applications, and estimate the performance of a new application by

use of previous MBT results and the way how components are composed

together.

 Updated Functional Testing. Along with the later use case development and

integration with PHANTOM, new functions may come and interfaces may

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 63

Confidentiality: Public Distribution

change. MBT will also take into account the updates and integration of use cases

and provide an updated functional testing.

D3.1 – First report on programmer- and productivity-oriented software tools

Page 64 Version 2.0 2 November 2017

Confidentiality: Public Distribution

5. CONCLUSION

In this document is reported the current status of the initial development of the tools and

technologies that will support the activities of three modules of PHANTOM. Those

components are the Parallelization Toolset, the Programming API and the Model Based

Testing. For each module are identified:

 the requirements from the use cases that each module must fulfil;

 the design aspects and decisions taken during specification;

 the technical details and technologies used in the implementation of those tools;

 the results of the first tests;

 how the developed tools will communicate with the other PHANTOM modules;

and

 the next steps planned for the development the three modules.

Regarding to the development of the Parallelisation Toolset, 15 requirements were

identified from the use cases to be taken into consideration. Design of two

functionalities were discussed: Code Analysis, responsible for the identification of

parallelisable code inside components of a PHANTOM application; and Technique

Selection, responsible for the selection of the most appropriate parallelization

technology (e.g. MPI, OpenMP, etc.) that allows a more efficient implementation of the

deployment plan and injection of the API/annotations on each component‟s source

code. It is also described how components will be implemented to run on FPGA-

coupled devices, having identified the APIs and directives that need to be respected.

Future developments of these will focus on the heterogeneity support, namely on the

support of GPU and FPGA devices.

In the case of the Programming Interfaces, the use cases provided 12 requirements. To

meet these requirements, 3 groups of APIs were described: Shared API, to handle

shared memory; Queue API, allowing the usage of blocking FIFO data items on

distributed memories; and Signal API for coordinating the execution of different

components without data exchange. Moreover, an API for specifying CPU-GPU

communication was also described. The next steps of the Programming Interface will be

in the integration of the CPU-GPU communication API with the OpenCL library and

the development of FPGA related support.

Model Based Testing addresses 3 requirements from the use cases. Use cases were

studied in detail in order to allow the understanding of the technical challenges that they

provide to the execution of Model Based Testing methodologies. MBT components

have been developed in PHANTOM and the MBT workflow has been achieved to

deliver end-to-end model validation, functional testing and non-functional testing for all

three use case applications; current MBT results have been provided to developers and

presented. The MBT integration in PHANTOM was also defined according to the

integration objectives. In the future, MBT will focus on performance testing with

monitoring framework, security testing for access control, MBT-MOM interaction,

early performance testing strategy and updated functional testing.

 D3.1 – First report on programmer- and productivity-oriented software tools

2 November 2017 Version 2.0 Page 65

Confidentiality: Public Distribution

6. REFERENCES

[1]. Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[2]. Chris Lattner. clang: a C language family frontend for LLVM. http://clang.llvm.org/, 2016.

[3]. Developer Express Inc. CodeRush for Visual Stu-

dio.https://www.devexpress.com/products/coderush/, 2016.

[4]. Jean-Noël Rouvignac. The AutoRefactor project. http://autorefactor.org/, 2014.

[5]. Xilinx Zynq-7000 All Programmable SoC Product Brief -

https://www.xilinx.com/support/documentation/product-briefs/zynq-7000-product-brief.pdf

[6]. SDAccel Development Environment - https://www.xilinx.com/products/design-

tools/software-zone/sdaccel.html

[7]. PHANTOM Linux Software Distribution - https://github.com/PHANTOM-

Platform/PHANTOM-FPGA-Linux

[8]. Association of COINS Compiler Infrastructure. COINS Compiler Infrastructure.

http://coinscompiler.osdn.jp/international/, 2016.

[9]. Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann, and Samuel

Midkiff. Cetus: A source to-source compiler infrastructure for multicores. Computer,

42(12):36–42, 2009.

[10]. U Banerjee. Dependence analysis, 1997

[11]. S Horwitz, P Pfeiffer, T Reps. Dependence analysis for pointer variables. ACM SIGPLan

Notices, 1989

[12]. Z Li, PC Yew, CQ Zhu. An efficient data dependence analysis for parallelizing compilers.

IEEE Transactions on Parallel and Distributed Systems. Volume: 1, Issue: 1, 1990

[13]. Randy Allen and Ken Kennedy, Optimizing compilers for modern architectures, Morgan

Kaufman Publishers, San Francisco, CA, 2002.

[14]. Michael Wolfe, Optimizing Supercompilers for Supercomputers, MIT Press, Cambridge,

MA, 1989.

[15]. Steven S. Muchnick, Advanced Compiler Design and. Implementation, Morgan Kaufmann

Publishers, 1997

[16]. Eclipse Formal Modelling Project, https://projects.eclipse.org/proposals/eclipse-formal-

modeling-project

[17]. TTCN-3, http://www.ttcn-3.org/

[18]. Faivre, A., Gaston, C., Gall, P.L.: Symbolic Model Based Testing for Component Oriented

Systems. In: Testing of Software and Communicating Systems. pp. 90–106. Springer,

Berlin, Heidelberg (2007).

[19]. Eclipse Titan, https://projects.eclipse.org/projects/tools.titan.

https://www.xilinx.com/support/documentation/product-briefs/zynq-7000-product-brief.pdf
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux
https://github.com/PHANTOM-Platform/PHANTOM-FPGA-Linux
https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
https://projects.eclipse.org/proposals/eclipse-formal-modeling-project

