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EXECUTIVE SUMMARY  

This document describes the initial developments on the tools and technologies to 

support the activities of the Parallelization Toolset and Model Based Testing modules of 

the PHANTOM architecture, and on the specification of the PHANTOM Programming 

Interface. Further developments will be reported in D3.2 ï ñFinal report on 

programmer- and productivity-oriented software toolsò. 

In section 2, the Parallelization Toolset is described. Presented in this section are the 

technologies and algorithms for both code analysis and technique selection. Code 

analysis uses tools like ANTLR and CETUS to parse and to identify parallelisable code. 

This section also describes the methodology used to select the proper technology for the 

implementation of parallelised tasks based on the deployment plan provided by the 

Multi -Objective Mapper. The PHANTOM API is implemented by either CUDA, 

OpenMP, OpenCL, MPI or Pthreads APIs, based on these decisions. Still in the context 

of the Parallelization toolset, it is also provided some insight on the work developed for 

task parallelization on FPGAs. 

Section 3 identifies and describes APIs to support the development of PHANTOM 

applications following a component-based approach. These APIs use the C 

programming language and allow the use of generic parallelisation functionalities, 

addressing both synchronization and data sharing mechanisms. This section also 

presents the PHANTOM API for communications between CPUs and the attached GPU 

devices, used to describe functions intended to be executed in GPU devices. 

The final section reports the current status of Model Based Testing development. A 

study of the functional behaviour of each use case is performed to understand the 

expected inputs and outputs of the tests. A methodology for the definition and execution 

of tests is provided, being also identified the tools to be used in PHANTOM and how 

the Model Based Testing module will interact with other modules of PHANTOM 

architecture. 
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1. INTRODUCTION  

1.1 SCOPE 

This document reports the progress of all tasks executed in the context of WP3 ï 

ñProgrammer- and productivity- oriented software tools. Figure 1-1 shows a 

representation of the PHANTOM architecture. Highlighted in red are the components 

developed within the context of WP3 activities. These components are the PHANTOM 

Programming API, the Parallelization Toolset and the Model Based Testing.  

 

Figure 1-1: Modules of the PHANTOM architecture addressed in WP3 

The Parallelization Toolset, which will be discussed in section 2, identifies 

parallelizable sections of the PHANTOM components, provides them to the Multi-

objective Mapper and, if the mapper elects to use a parallelisation scheme for that 

component, implements it. 

The PHANTOM Programming Interface details and implements the communication and 

data sharing between the different components that compose a PHANTOM application. 

This is described in section 3. 

Model Based Testing corresponds to a toolset dedicated to performing the testing of the 

PHANTOM application, both helping developers to test the functional behaviour of the 

application and providing metrics to help the Multi-objective Mapper on the decision of 

parallelization plan. This component will be described in section 4. 
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1.2 PHANTOM  APPLICATION PARALLELIZATION APPROACH 

The PHANTOM programming model for applications (see D2.1 for details) follows a 

component-based approach ï the application is constructed as a set of individual 

components (Figure 1-2). Components have their own thread(s) of control and are 

independent. They do not share data or communicate, except where explicitly 

enumerated by the design of the application. The enumeration of components and their 

shared data is called the Component Network.  

 

Figure 1-2: Component-based PHANTOM application 

The components are separate processes and can thus benefit from deployment on 

distributed hardware resources (see D4.2 for details on the PHANTOM heterogeneous 

infrastructure testbed). The programming model provides the notion of communication 

channels, through which the components must communicate with one another in order 

to exchange the data or synchronise the execution (such as a one-directional ñqueueò or 

bidirectional ñsharedò, see more in D2.1). 

Since the PHANTOM programs are running on different hardware and thus do not share 

any common compute resources, they can be treated as fully parallel executions. In 

order to synchronise the execution of application components in accordance with the 

application logic, the programs might use sync messages (which are enumerated in the 

Component Network). 

The component-based execution constitutes a basic level of parallelism ï coarse-

grained. Coarse-grained parallelism depends on the application logic and is enforced by 

the application developer through the programming model (and the associated execution 

environment of the PHANTOM platform). 

The next parallelisation level ï fine-grained parallelism ï can be achieved inside the 

individual components and aims to fully utilize the available parallel compute power 

(such as CPU cores, GPU kernels, or FPGAs). Fine-grained parallelism requires a 

special framework ï the Parallelization Toolset.  
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2. PARALLELIZATION TOOLSET 

The Parallelisation Toolset is responsible for the identification of concurrent regions in 

the application code, for source-to-source code transformation to implement 

parallelisation, and for considering pre-specified requirements and the decision of the 

Multi -Objective Mapper described in D2.1.  

 

Figure 2-1: Parallelization Toolset positioning in PHANTOM toolflow. 

Since PHANTOM uses a component based programming model (as described in D1.2), 

the Parallelisation Toolset retrieves the components which compose the PHANTOM 

program, analyses and transforms them in order to 1) replicate them to many identical 

copies that run on different óslicesô of input data and 2) to create different versions of 

components which exploit GPUs, FPGAs, SMP multiprocessors or Cloud 

environments. The first operation is performed by the Code Analysis described in 

section 2.2, which provides appropriate parallelization information to the Multi-

Objective Mapper. Then the latter functionality is performed by Technique Selection 

(described in section 2.3), driven by the mapping decision of the Multi-Objective 

Mapper and assisted by four sub-toolsets, which process the components towards a 

specific platform architecture. The sub-toolsets consist of: 

¶ CPU Toolset (CT) for transforming components targeting shared memory 

uniform memory access (UMA) or non-uniform memory access (NUMA), cache 

coherent, symmetric multiprocessing (SMP), CPU architectures 

¶ GPU Toolset (GT) which transforms components for graphics processing units 

(GPU) implementation 

¶ FPGA Toolset (FT), handling components for FPGA implementations 

¶  Cloud Technologies Toolset (CTT): Transforms components for Cloud 

environments 
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This document primarily considers the CPU Toolset and GPU Toolset, whilst the rest of 

the sub-toolsets will be described in future deliverables of WP3 and WP4. 

2.1 USE CASE REQUIREMENTS 

The Parallelisation Toolset is one of the main components of PHANTOM framework 

and it will transform and generate parallel code for the heterogeneous platforms that 

comprise the infrastructure of PHANTOM. Its operation is therefore significant for all 

three use cases: Surveillance, Telecommunications and High-Performance Computing. 

In general, the use case requirements refer to the support and the capabilities of code 

generation, support of heterogeneous platforms, support of parallelisation APIs and 

programming languages, as defined in D1.1. The addressed requirements are the follow-

ing: 

 

Req. No. Requirement Overall Priority  
U3 Parallelization of sequential application code, when complemented 

by parallelization instructions provided by the user 
SHALL 

U4 Automatic identification and parallelization of regions of sequential 

application code 
SHOULD 

U5 Support for multi-threaded concurrent tasks, including communica-

tion and synchronisation 
SHALL 

U6 Support of parallelization, influenced by non-functional require-

ments information 
SHOULD 

U7 Support for communications data-centric applications (e.g. automat-

ic scaling of components to the actual size of data to be processed) 
SHALL 

U8 Support for component-based application design  SHALL 
U14 Exploitation of SIMD instructions sets provided by CPUs SHOULD 
U19 Generation of target dependent parallel code for all mandatory 

target platforms without user involvement when sufficient annota-

tions are provided. 
SHOULD 

U21 Automation of transferring data to/from different memories accord-

ing to the component data model 
SHALL 

U22 Support for indication of application blocks to be parallelized SHALL 
U23 Support for indication of data dependencies, defining how data can 

be partitioned/split among the parallel application components 
SHALL 

U32 Support for application source code developed in C SHALL 
U33 Support for higher level language such as Java and C++ MAY  
U37 Support for exposing the generated parallel code to the user  SHALL 
U38 User modifications of the generated parallel code subject to re-

strictions or protected segments 
SHOULD 

 

2.2 CODE ANALYSIS  

The main task of the Code Analysis is to parse the componentsô source code of the user 

provided application and perform analysis for identifying the codeôs parallel regions, 

along with transformation, with emphasis on loop and task parallelization.  

2.2.1 Design Specifications 

Code Analysis retrieves the Component Network (described in D1.2.) which is provided 

by the user and stored in the PHANTOM Repository. Code Analysis parses the 

Component Network in order to identify the user-provided components along with their 
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source code, which are stored in the Repository. Then the tool performs its processing 

according to the workflow depicted in the following figure: 

  

 

Figure 2-2: Code analysis positioning in PHANTOM tool-flow 

The first operation includes the creation of a structural representation (i.e. parse tree as 

depicted in Figure 2-3) of the source code of each component, which will facilitate the 

identification of the variables and functions, important for loop and task parallelization. 

 

Figure 2-3: Example of source code structural (tree) representation. 

Based on the structural representation, the analysis will attempt to further simplify the 

source code in order to further facilitate the loop and task parallelization. The code 

analysis is then performed by searching the simplified source code for data 

dependencies [10][11][12], that could prevent the components parallelization (using 

tools such as COINS [8], CETUS [9]). The next step is the identification of ñforò loops 

and variables that can be parallelized, where the tool annotates them as parallelizable or 

not according to the dependency test outcome. In case a loop is parallelizable, the code 

analysis transforms the parallelizable loops-variables attributes (e.g. iteration size-limit) 

with specific PHANTOM directives (e.g. phantom_slice_size())  that enable the 

selected loop variables to be further parallelized and the component to be replicated.  
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Finally, the analysis exports the parallelization annotations/directives which provide the 

maximum number of possible parallel components to the Multi-Objective Mapper 

module (described in D2.1). 

2.2.2 Implementation Details 

The Code Analysis is a set of classes and functions implemented in Java, using 

appropriate XML libraries to be able to parse and modify XML documents. The input of 

the Code Analysis is the Component network XML document and the specified 

componentsô source codes (at the current stage C/C++) along with their header files that 

will be further analysed. 

Then the Code Analysis uses ANTLR [1] (see also D4.1) tool to parse and create the 

structural (tree) representation of each identified component. An example of the 

ANTLR operation is provided in the following figure: 

 

Figure 2-4: Example of ANTLR parsing. (Picture from ANTLR framework [1]) 

ANTLR stores the exported parse tree in a Java form that is aligned with the Java form 

of the Code Analysis and simplifies the following steps of the analysis. 

In order to achieve a more efficient analysis of the source code elements (declarations, 

expressions variables), Code Analysis employs the CETUS tool [9] (see also D4.1) in 

order to provide an intermediate representation between the parse tree and the source 

code, as shown in Figure 2-5, that will consist of the objects that are more meaningful 

for the parallelization process (e.g. for, while, loops, loop size, loop iterators, etc.).  

 

Figure 2-5: Example of intermediate representation using CETUS [9] 
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The next step consists of code simplification in which the Code Analysis attempts to 

transform the source code assignments and operations in a form that will facilitate the 

loop and task parallelization (e.g. simplifies mathematical operations). The Code 

Analysis is currently using CETUS functions for code simplification but also other 

refactoring tools are under investigation, such as CodeRush [3] and AutoRefactor [4]. 

Specifically, the Code Analysis will execute the single variable declaration function, 

which re-writes variable declaration to achieve single variable per declaration. Then it 

executes induction substitution which recognizes and substitutes induction variables in 

loops that take the form of iv = iv + expr [9]. Assignments of this form prevent a loop 

from being parallelized due to its data dependence, since variables inside a loop cycle 

depends on the values assigned in other cycles. The CETUS induction substitution will 

transform these assignments to a form that does not include significant data 

dependencies, thus enabling loop parallelization. This substitution process is 

exemplified in the following figure. 

 

Figure 2-6: Example of code simplification 

After the code simplification, the Code Analysis will perform one of the most 

significant tasks which is the identification of data dependencies [10][11][12]. As 

aforementioned, the Code Analysis will give emphasis on searching for loops that are 

parallelizable, since they consume most of the execution time of a sequential program. 

In case a loop includes dependencies between its instructions it cannot be parallelized 

without affecting its initial context and operation. These situations require the execution 

of code transformation to eliminate the data dependencies. The CETUS data 

dependence analysis framework [9] gathers dependence information for array accesses 

within loop nests and creates a data dependence graph, on top of which it performs 

conventional dependence tests, such as the Banerjee test [13][14] and the Greatest 

Common Divisor test [15]. In case that a loop includes data dependencies that cannot be 

resolved then the loop is characterized as not parallelizable. Some data dependencies 

can be resolved either by CETUSôs conventional methods either by custom 

modifications and algorithms. The current version of Code Analysis extends the loop 

dependence handling by introducing a custom modification of the CETUS testing to 

enable loop transformation towards the PHANTOM parallelization requirements. For 

example, in case of a specific type of data dependence in a ñforò loop that can be split 

by iteration size, the code analysis will slice the ñforò loop in a multitude of ñforò loops 

by substituting the iteration size with the PHANTOM specific directive 

(phantom_slice_size()), thus each component will execute the loop until the size of the 

each slice, as shown in Figure 2-7. 
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Figure 2-7 Example of a parallelizable loop 

Data dependency test is an aspect that can improve loop parallelization and is 

investigated for the future versions of the Code Analysis.  Since, PHANTOM addresses 

parallelisation of components targeting heterogeneous platforms, more data dependency 

algorithms will be investigated, considering also range analysis aspects for future 

versions.   

The final step of the Code Analysis includes the exploitation of the achieved 

parallelization level of the analysed components. The analysis edits the Component 

Network XML document where, for each component, it adds the maximum number of 

possible parallel components (and communication objects accordingly), as described in 

the following figure: 

 

Figure 2-8: Example of parallelization directive 

The above figure depicts an example of the XML element ñparallelisation directiveò 

which provides the maximum number of possible parallel subcomponents, for a specific 

component (in this case ñcomponent name=ôAô ò). This information will assist the 

Multi -Objective Mapper module (described in D2.1) to further replicate the 

parallelizable components, improving the mapping outcome and overall efficiency. 

2.2.3 Demonstration/Example usage 

The Code Analysis is evaluated in terms of its ability to identify parallelizable loops in 

the source code of the user provided components. The current testing scenario consists 

of the following steps:  

1. The Parallelization Toolset retrieves the component network from the repository  

2. The Code Analysis parses the components specified in the component network 

3. The identified loops are tested for data dependencies 
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4. The parallelizable loops are transformed accordingly, with the addition of 

PHANTOM specific directives 

5. The Code Analysis exports the parallelization directives to the Component Network 

that will used by MOM. 

The following picture provides a test run of the Code Analysis on a custom source 

component (in the C/C++ language), along with a Graphical User Interface that helps 

the user to execute the code analysis.  

 

Figure 2-9: Example of Code Analysis test 

In the example of the above, the analysis identified all existing loops and was able to 

parallelize one of them 64 times, whilst the remaining ñforò loops could not be 

parallelized due to unresolved dependencies. Current results show that the first version 

of the Code Analysis is able to identify all existing loops inside the componentsô source 

code, and is able to resolve-parallelize a number of non-complex existing loops. The 

number and the complexity of the parallelized loops is expected to grow in the next 

versions of the Code Analysis. Furthermore, the Code Analysis is tested in terms of 

execution time since it might add a non-trivial overhead to the overall optimization and 

optimization process. Current results show that the execution time of the Code Analysis 

has values in the range of a few seconds (<10s) for up to 5 source code components, but 

more tests will follow in the future implementations. 

2.2.4 Dependencies/integration aspects 

The Code Analysis is related to the PHANTOM Programming Model (see D1.2), from 

which it retrieves the user defined Component Network, along with the application 

components' source code to be parallelized. Then, the Code Analysis transformation 

phase uses the PHANTOM Communication APIs, protocols and corresponding 

functions that will be added in the componentsô source code to provide the loop 

parallelization. Finally, the Code Analysis is strongly related to the Multi-Objective 
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Mapper (MOM) developed in WP2, since the analysis will provide the parallelization 

directives facilitating MOM to explore the available number of the parallelized 

components, in order to replicate them. Existing parallelization tools and frameworks 

will be investigated to facilitate the deployment of the parallel design regions, as 

suggested by WP1, on the heterogeneous infrastructure, set up by WP4. 

2.2.5 Innovations beyond the state-of-the-art  

2.2.5.1 Background technologies utilised in development 

XML Parsing Classes 

The Code Analysis is a set of classes and functions implemented in Java, using 

appropriate XML libraries to parse and modify XML documents. These libraries are 

mainly required to process the Component Network that provides all necessary 

information about the components. 

Source code Parser 

The Code Analysis uses the ANTLR tool (http://www.antlr.org/) to parse and create the 

structural (tree) representation of each identified component. ANTLR stores the 

exported parse tree in a Java form that is aligned with the Java form of the Code 

Analysis and simplifies the following steps of the analysis. 

Intermediate Representation (IR) and Dependence Analysis 

CETUS compiler infrastructure (https://engineering.purdue.edu/Cetus/) is used for the 

IR and the Dependence Analysis of the componentsô code. The tool is responsible for 

both, creating an intermediate level of description for the code, and running some of the 

latest available dependence tests on it, determining if itôs parallelizable or not. 

2.2.5.2 Summary of new technologies/extensions developed 

High-Level Annotations and Parallelization Directives 

Code Analysis was extended with certain functionalities designed to provide helpful 

information about the componentsô code. In specific, high level annotations are 

produced by analysing the results provided by CETUS, as well as directives about 

components parallelization capabilities are added in the component network, 

information that will be used for the functionality of the Multi-Objective Mapper. 

2.2.5.3 Early/Full Prototypes functionality 

Early -First Year Prototype 

The component model is being successfully extracted from the Component Network to 

be used by the rest of the Code Analysisô functionalities. The analysis of the 

componentsô code is able to employ successfully the CETUS compiler infrastructure 

and locate certain parts of the code that do not seem to have any dependencies, thus, can 

be parallelized. According to the information extracted by the Code Analysis, 

parallelization directives are successfully added to both the Component Network and to 

the source code of each component. 
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Full Prototype and Next Steps 

Driven by the continuous research that is being done on automatic parallelization, other 

tools are being compared with CETUS, with new techniques at their disposal and more 

capabilities. In specific, the ROSE Compiler has already been embedded in the PT and 

is currently being tested against CETUS with promising results, as well as PLUTO + 

Polly (with its use of the Polyhedral Model). In addition, other code analysis tools will 

also be investigated in the context of source code simplification and to further provide 

more facilities in code transformation and dependence analysis, in regard to the 

development of the latest parallelization techniques available. 

2.3 TECHNIQUE SELECTION  

The Technique Selection (TS) operation is performed after the execution of the Multi-

Objective Mapper, in order to receive its mapping decision and produce the 

parallelization indications inside the componentsô source code, to guide the Deployment 

manager on the generation or activation of the actual parallelization functions. 

2.3.1 Design Specifications 

The Technique Selection receives the MOM outcome, indicating the mapping decisions, 

along with the platform description and the component network to further decide on the 

best parallelization API for the parallelization technique (e.g. OpenMP, threads 

communication, MPI, etc.). Furthermore, TS will provide information to the 

PHANTOM API execution management functions, developed in the context of 

PHANTOM to initialize/finalize important functionalities of low level communication 

APIs, applied to all components that will use those APIs (e.g. in case there are more 

than one pthread component these functions initialize mutex variables). These functions 

facilitate the Deployment Manager with the adoption and execution of low level 

communication APIs. TS functionalities are detailed in the following figure: 
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Figure 2-10: Techniques selection positioning in PHANTOM tool-flow 

As depicted in the above figure (Figure 2-10) TS first parses the MOMôs outcome (i.e. 

optimized deployment plan) in order to: 

1. Classify the components depending on the type of platform to which they are 

mapped; 

2. Identify the interacting components of the final deployment. 

Then, the TS operation executes a fast and low complexity decision mechanism which 

selects the appropriate low-level communication API (e.g. OpenMP, MPI, OpenCL) 

that is the best fit for the components, according to the specified mapping to physical 

resources (processing elements). 

Furthermore, TS provides information regarding the PT techniques selection by editing 

PHANTOM API functions with annotations that will facilitate the Deployment 

Manager operation based on existing parallelization APIs. For example,  

#pragma phantom MPI_Send 

In addition, the existing communication protocol annotations (e.g. #pragma phantom 

shared in data), are replaced by lower level communication directives (e.g. #pragma 

phantom MPI_Send()), that indicate the Deployment manager to generate or activate 

the actual parallelization functions. 

2.3.2 Implementation Details 

The Technique Selection tool is implemented in Java and similarly to the Code Analysis 

it uses XML libraries to parse its input and generate its output. The input to TS is the 

Optimized Deployment Plan (in XML form) provided by the MOM, the Component 

Network XML document and the specified componentsô source codes (currently 

supporting C/C++) along with their header files that will be further analysed. 

The first step of the operation includes the XML parsing and analysis of MOMôs 

optimized deployment plan along with the XML parsing of the Component Network in 

order to correlate the information from the two documents. The current implementation 

considers the following component attributes: 

Table 2-1: Component attributes for Technique Selection 

Component Attributes 

Mapping name: e.g. 

component_A_1_map 

Mapping type: e.g. processing 

Component name: e.g. A_1 

Component id: 1 

Subcomponents: e.g. 32 
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Processor name: e.g. P1 

CPU-name: e.g. CPU2 

Device Type: CPU-based 

 

The first attribute is the mapping name, relative to the name of the component. Then the 

mapping also includes a mapping type, which indicates whether the mapping refers to a 

mapping of a component to a processing element (tagged as ñprocessingò) or a mapping 

of a communication object (tagged as ñcommunicationò) to a physical communication 

buffer. In addition, TS considers the component name, id and also the 

ñSubcomponentsò attribute, which refers to the possible number of parallel 

subcomponents of this component. TS considers the processor name, the CPU name 

and the Device Type (e.g. CPU-based) to which a component is mapped. 

TS specifies the communication objects and their attributes in order to assist the 

technique selection process (e.g. if memory type==local, use pthreads) while also 

assigning specific attributes to the PHANTOM protocols and APIs, used inside the 

componentsô source code (e.g. queue_get(var, var->source=2é). The considered 

communication object attributes are provided in the following table: 

Table 2-2: Communication object attributes for the Techniques Selection 

Communication object Attributes 

Mapping name: e.g. 

communicationObjectBF1_1_map 

Mapping type: e.g. communication 

Component name: e.g. BF1_1 

Communication object id=0 

Memory name: e.g. MEM1 

Memory type: e.g. local 

Source name: e.g. A_1 

Source id: e.g. 1 

Target name: e.g. B 

Target id: e.g. 0 

 

Similar to the component attributes, the communication object attributes are the 

mapping name, relative to the name of the communication object, the mapping type 

which in this case it is ñcommunicationò the component name referring to the 

communication objects name and the id of the object. In addition, TS considers the 

physical memoryôs name (or channel/buffer) to which the communication object is 

mapped, along with its type (local or shared). Furthermore, TS needs to know the 

source component name along with its ñSource-idò and the target name along with the 

ñTarget-idò. 
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The second step includes the parsing of componentsô source code, in order to specify 

the attributes of the variables that have to be processed (e.g. sent/received) through the 

PHANTOM functions. This operation identifies the following attributes: 

1. The variables to be pushed in queues or memories (e.g. #pragma phantom 

queue out | output_image_L | ) 

2. The variableôs attributes: type, dimensions, size (e.g. double | output_image_L | 

[64] |) 

3. Identification of communication protocols inside the components (e.g. 

phantom_queue_put(é)) 

In the third step, TS decides on the specific low-level communication API for each 

component (e.g. components A and B will use MPI but component C will use CUDA). 

The selection process iterates through the communication objects, where for each of 

them identifies the source (and target components) and selects the appropriate low-level 

communication API according to the communication type (e.g. memory/Ethernet), 

source processor type, target processor type. The following listing provides an example 

of a low-level communication API indication:  

 

Listing 2-1: Example of low level communication API 

The current version of TS considers the pthreads, OpenMP, MPI, CUDA, OpenCL 

APIs (also described in D4.1) for the low-level communication APIs. 

The final step includes the attribute replacement and code generation inside the 

componentsô source code but also in PHANTOM API headers and functions. In this 

direction, TS parses the PHANTOM API header files and replaces component-specific 

attributes with all the information derived from XML and componentsô code parsing, in 

order to provide the PHANTOM API communication functions and protocols, with 

appropriate information, regarding their low-level implementation. The following 

listing provides an example where pthreads, OMP and MPI specific attributes were 

added to the component. 

If (source processor type == CPU) and (target processor type == CPU) and (communication 

type == local memory)  

{  

 return phantom_Pthreads; 

}  
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Listing 2-2: Sample of component attributes definitions 

The above information is stored in specific structures initialized at the execution of the 

PHANTOM application and is used for the proper parallelization of the components and 

the proper execution of the PHANTOM API functions. The following listing shows an 

example of a structure to store this information. 

 

Listing 2-3: Example of PHANTOM API structure 

Finally, the existing communication protocol annotations (e.g. phantom_queue_put 

(dataΝ)), are replaced by low-level communication directives (e.g. cudamemcpy 

(dataΝ)), that indicate the Deployment Manager to generate or activate the actual 

parallelization functions. TS replaces the arguments of the PHANTOM API functions 

with the specific communication object attributes, in order to match the function with 

the appropriate structure corresponding to the variable (e.g. output_image_L) and derive 

its attributes (e.g. source, target, typeé). For GPU code implementation, specific low-

level commands are considered in order to be generated inside the componentsô code, 

used to forward the variables and the functions to the GPU device (e.g. 

cudaMemcpyAsync(dev_in, simage, size_in*sizeof(double), 

cudaMemcpyHostToDevice, stream[cmpid]);). 

2.3.3 Dependencies/integration 

TS first interacts with the PHANTOM Repository from where it retrieves its input 

documents and source code. The first part of the input, consists of the Component 

Network and the componentsô source code. TS also interacts with the Multi-Objective 

Mapper in order to receive its outcome, defined as the optimized deployment plan. TS 

uses the PHANTOM APIs to select, generate or replace the high-level communication 

//Communication objects IDs and features 

#define PHANTOM_NUMOFCOMMS 2 

static int phantom_source_id[PHANTOM_NUMOFCOMMS]={1,2}; 

//The direction of the communication object: 0.IN-pull, 1.OUT-push, 2.INOUT-both/update 

static int phantom_direction[PHANTOM_NUMOFCOMMS]={0,1}; 

 

//number of components that use a relevant toolkit 

#define PHANTOM_PTHREADS_COMPS 3 

#define PHANTOM_OMP_COMPS 0 

#define PHANTOM_MPI_COMPS 0 

struct phantom_componentlist 

{  

    int id; 

    int dev_prc_type; 

    int ext_api; 

    int cmpprocess; //The process/processor in which the component belongs 

    int cmp_slice_size; 

    int cmp_offset; 

};  
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APIs with appropriate low-level communication APIs and indications. Finally, TS sends 

the parallelized components to the Deployment Manager for further annotation 

replacement, code and metadata generation. 

2.3.4 Demonstration/Example usage 

TS decides on the best low-level communication API per component, but it also 

matches the final deployment plan with the components and their communication 

functions. In addition, TS replaces existing annotations and information with low-level 

annotations referring to low-level communication APIs, facilitating the final 

deployment of the parallelized components. In this direction, the current version is 

evaluated in terms of its ability to select the appropriate low-level communication API, 

according to the MOM outcome but also in terms of appropriate annotation 

replacement. 

The following paragraph includes an evaluation scenario in which MOM has decided to 

map three components of an example application to the same processor, on nearby 

CPUs to avoid the communication overhead. Technique Selection is expected to: 

1. Identify the interacting components to provide PHANTOM APIs with relative 

information (annotation replacement and generation) about the componentôs 

number and the source and target of the communication objects; 

2. Select an API that will introduce minimal communication overhead such as 

OpenMP or pthreads; and 

3. Generate appropriate low-level communication APIs. 

The following figure depicts a diagram that includes the MOM outcome with its 

components and memoriesô mapping. 

 

Figure 2-11: Mapping example for Technique selection demonstration 

Since the components (in this case A_1, A_2, B) are mapped to the same processor and 

the communication objects (in this case BF1_1 and BF1_2) are mapped on two local 

memories, TS decides (based on the processor type and the type of the communication 

type) that each component will run on a different thread using pthreads. To this purpose, 




































































































