HEY
& PHANTOM
=z

Cross-Layer and Multi-Objective Programming Approach for
Next Generation Heterogeneous Parallel Computing Systems

Project Number 688146

D3.17 First report on programmer- and productivity-
oriented software tools

Version 2.0
2 November 2017
Final

Public Distribution

Unparallel Innovation, Wings ICT Solutions, Easy Global
Market, University of Stuttgart

Project Partners: Easy Global Market, GMV, Intecs, The Open Group, University of Stuttgart,
University of York, Unparallel Innovation, WINGS ICT Solutions

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
PHANTOM Project Partners accept no liability fomy error or omission in the same.

© 2017 Copyright in this document remains vested in the PHANTOM Project Partners.

D3.171 First report on programmeand productivityoriented software tools

PROJECT PARTNER CONTACT |NFORMATION

Easy Global Market
Philippe Cousin

2000 Route dekucioles

Les Algoithmes Batiment A
06901 Sophia Antipolis
France

Tel: +336804 79513

E-mail: philippe.cousin@eglobalmark.com

GMV

José Neves

Av. D. Jodo Il, N° 43

Torre Ferndo de Magalhaes, 7°
1998- 025 Lisba

Portugal

Tel. +351 21 382 93 66

E-mail: jose.neves@gmv.com

Intecs

Silvia Mazzini

Via Umberto Forti 5

Loc. Montacchiello

56121 Pisa

Italy

Phone: +39 050 9657 513
E-mail: silvia.mazzini@intecs.it

The Open Group

Scott Hansen

Rond Point Schuman 6

5" Floor

1040Brussels

Belgium

Tel: +32 2675 1136

E-mail: s.hansen@opengroup.org

University of Stuttgart
Bastian Koller
Nobelstrasse 19
70569Stuttgart
Germany

Tel: +49 711 68565891
E-mail: koller@hlrs.de

University of York

Neil Audsley

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325571

E-mail: neil.audsley@cs.york.ac.uk

Unparallel Innovation

Bruno Almeida

Rua das Lenda&lgarvias, Lote 123
8500794 Portimdo

Portugal

Tel: +351 282 485052

E-mail: bruno.almeida@unparallel.pt

WINGS ICT Solutions

Panagiotis Vlacheas

336 Syggrou Avenue

17673 Athens

Greece

Tel: +30 211 012 5223

E-mail: panvlah@wingsct-solutions.eu

Pageii

Version2.0

Confidentiality: Public Distribution

2 Novembe2017

jy PHANTOM D3.17 First report on programmeand productivityorientedsoftware tools

DoCcUMENT CONTROL

Version Status Date
0.1 Definition of TOC 12/04/17
Contributionof WINGSto ParallelizatiorToolset and Programmin 05/05/17
0.2 Interface
0.3 Contribution of EGM to Model Based Testing section 09/05/17
0.4 Updateof WI NGS6 and EGMOs 25/05/17
0.5 Contribution of HLRS to Phantom Application Parallelizatiop- A 30/5/17
proach and of YORK to FPGA section on the parallelization tog
0.6 Executive Summary, Introduction and Conclusion 31/5/17
0.7 HLRS and York review and correspondingpdifications 716/17
1.0 Final Contributionsaand Modifications 9/6/17
2.0 Contributions from WINGS, EGM, YORK and UNPARALLEhf 2/11/17
the Innovations Beyond the Staiéthe-Art subsectionso incorpo-
rateEC reviewe r codments.

2 November2017 Version 2.0 Pagsiii
Confidentiality: Public Distribution

oy

D3.171 First report on programmeand productivityoriented software tools Ry

TABLE OF CONTENTS

IO 1 0 To [0 [1[0 o PP PPPPPPPRPPPRPI 1
S oo PP PP P PP PP 1
1.2PHANTOM Applicabn Parallelization Approach..........cccccceeeeeiiiiiieeeiii e 2

2. Parallelization TOOISEL........cooiiiii i rree e erees bbb e e e e e e e e e e e s smmreeeaaeaeaeeas 3
2.1USE CaSE rEQUITEIMENTS.ciiiiiiiiiiiitttieeee st e e e e eeanss bbb e e s e e e et e eeeeeaeessmmmreeeeeeeeas 4
p A @ To [AN g = 1| P PSPORRY < §

2.2.1 DeSIgN SPECITICALIONS.......ciiiiiiieiiiiiiiime ettt e e e e errer e s s e e e e e e e e e e e e eeeeeneneeaeas 4
2.2.2 Implementation DELAIIS.uuiiiiiiiiiii e 6
2.2.3 Demonstration/EXample USAQE...........uuuuruurmmiiieeeeiiiiiisse s e e e e e e e e e 8.
2.2.4 Dependencies/iNtegration @SPECLS.uuu i iiiiiiiiiieerieiieeieteeee e e e e e s s ssrmmme e e e e e e e e s 9
2.2.5 Innovations beyond the stat@-the-art..............coooviiiiiiiiiieee e 10
2.3TeChNIQUE SEIECHION.t e e e e e e e e e e aeee s s e e e e e aeaaeas 11
2.3.1 DeSIgN SPECITICALIONS.eeiiiiiiiiiiieeee et eeee s eneeannen 11
2.3.2 Implementation DetallS..............uuuuiiiiiii i eeeer e ———- 12
2.3.3 DependenCieS/INEGIAtiON............cuiiii e enee e 15
2.3.4 Demonstration/EXample USAQE............uuuuuuiiiiiiceeeeeeiiiiiee s e e e e e emrmnn s e e e e e e e eea e 16
2.3.5 Innovations beyond the stat@-the-art..............coooviiiiiiiiiieee e 17
2 A P G AS. ..o —— bttt ettt t e e e e e e e e e ettt e e e e e e e e e e e e e e e nan e nnne s 18
2.4.1 PHANTOM HardWaranterfacCe..........uuuuiiiiieeeeeeeiceeeiiias e e e e e e e eeeeeeeeeeeesnnneeeeeeeeeeeennnnes 20
2.4.2 Innovations beyond the stab@-the-art.............ccccvviiiiiiiiieen e 20

3. Programming INtEIACES.ccooii it e e e e e amee s 23
3.1USE CaSE rEQUITEIMENTIS. ...cciiiiiiiieieteeee e e s eneesssb bbb bbb e e e et e e e e e e e s eenmseeeeeees 23
3.2Shared MEMOIY APRL....... ittt a 24

3.2.1 DeSIgN SPECITICALIONS......cciiiiiiieeiiiiiiiiimce ettt e e e e eeere e e e e e e e e e e e e e e eeannne s 24
3.2.2 Implementation DEtaIlS.uuiiiiiiiiie s 24
BB QUEUE APt eer e e e et e e et s 26
3.3.1 DeSIgNSPECIfICALIONS........cciiiiieeeiiiieicemce e et e e e e e e e e e e e e aeeee s 26
3.3.2 Implementation DEtaAIIS.cuiiiiiiiiii s 26
LA SIGNAI APt en 29
3.4.1 DeSIgN SPECITICALIONS.eeiiiiiiiiiiieie it eree e b e enenaaes 29
3.4.2 Implementation DetallS..............uuuiiiiiiii i eeeer e ————- 29
3.5PHANTOM API for CPUGPU COMMUNICALION..........cceveeeeiiriiiiiimmmreeeeeeaieninnnnneeeeeeememees 32
3.5.1 DeSigN SPECITICALIONS........cceviiiiieieieiiiiii e et e e e e e e mmmr e e e e e eaaa e e e e eeesannmeees 32
3.5.2 Implementation DEtAIIS.uuiiiiiiiiiiii s 33
3.6 DependencCieS/INTEGratiOon..........c.ciiiiiiii e ceees e ereer e e e e e ——— 35
3.7 demonsStrator/EXamMPle USBOE.uuuuiiiiiiiiiiieeeiiittiiieeeee e e e e e e e e eerereeeeeeeeeaaaaaeeaeeaasenanae 35
3.8Innovations beyond the stad@the-art..............ooooiiiiiiiiii e 37
3.8.1 Background technologies utilised in development..............iiccceveeeeveviinnnnnnnn. 37
3.8.2 Summary of new technologies/extensions develaped..............ccccvcceiiinveeeeennnnn. 38
3.8.3 Early/Full Prototypes fUNCHONALILY.............uuuuiiiiiiiiiieeeiiiiiiiiieeeeeee e 38

4. MOdel BASEA TOSHNG. ...eetiiiiiiiiieeieii it e e e bbb e e enenssse e b ene e e e 39
4.1 USE CaASE NEQUITEIMEINES.uuuuieiiiiiiiiis e e e e ieeee e s ettt e e e e e eeaa e e e saeeeeeaeetsa e e eeeesatn e e ananeeeeaeees 39

Pageiv Version2.0 2 NovemberR017

Confidentiality: Public Distribution

FRE R

s D3.171 First report on programmeand productivityorientedsoftware tools
4.1.1 Surveillance SPeCIfiCatiIQN.ccoeiei e e eieeee e 40
4.1.2 TelecOm SPECITICALIONL.uuuiiiiiiiiiiiii et eene e A2
4.1.3 HPC SPECIICALION.......ccceiiiieiiieiiiieeee e rr e e e e e e e e e s ammmn e e e as 43

4.2 DeSIgN SPECITICALIONS.eeiiiiiiiiiiiie st e e e e e e e e e et anees e s s e e e e e e e e e e eeeeeeeetebbnnneeeeeeeeees 44
4.3Implementation DetalilS...........cooiiiiiiiiiiieee e 45
4.3.1 MBT MOUEISottt erer s e e e e e e e e e e e e e e eanens s e e e eeeeeeeeeees a7
4.3.2 Generated TESE CASES......cciiiiiiiiiiiitirree s st eeeessab bbb bbb bbbt e e e e e eeeaesennnseees 50
4.3.3TTCN-3 PUBISNEL.....euiiiiii et eeeees 51
R N 0o To [=To7 4 B =T ot 0 Lo (=Y our 53
4.3.5 SYSIEM AGAPLEL... .o ii et eree e e enanr s 53
4.3.1 Implementation SUMIMALY............uuuuiiie s ceeereinisss s e e e e e e eeesesaseesaasseeaeaaaaaseeseesssnne 55
4.4Demonstration and TestiNg RESUILS. ..o e 55
4.5 Dependencies/INtEQIatiON............cceiiiiiiieieeeee e ee e e e e e e emennnes 58
4.5.1 INtegration ODJECTIVES.uuuiiiiiiiiiiiii et nnne s 58
4.5.2 PHANTOM platform interfaCes..........cooovviiiiiiiiiieeee e 58
4.5.3 MBT interactionflow with PHANTOMoouuiiiiiiiiiisi e eneen s 59
4.6 Innovations beyond the stap@the-art (EGM)..........uuuuiiiiiiiiiieeiceeeiciiiieeee e eeeeeeeeen 60
4.6.1 Background technologies utilised in development..........ccooovviiiiieeciiiiiiieeeeeee 60
4.6.2 Summary of new technologies/extensions develaped..............cccccoveeeeeiiiiiiiinnnnn, 61
4.6.3 Early/Full Prototypes functionality.............oooooiiiiiiimmmniiiii e 62

ST ©0] o o] 41 o] o SRR 64

T T (=T = o = PR 65

2 November2017 Version 2.0 Pagev

Confidentiality: Public Distribution

A=

D3.171 First report on programmeand productivityoriented software tools A

EXECUTIVE SUMMARY

This document describes theitial developmentson the tools and technologids

support the activities of the Parallelizatibaolset and Model Based Testing modules of

the PHANTOM architectureand on the specification of ttrRHANTOM Programming
Interface Further developments will be reported D3.2 7T AFi nal repor
programmerand productivityor i ent ed software tool so.

In section 2 the ParallelizationToolsetis describedPresentedni this sectiorare the
technologies and algorithms fdroth code analysis and technique selecti@Qude
analysisuses tools like ANTLR and CETUS® parseandto identify parallelisable code.

This section also describes the methodologgdto select the proper technology for the
implementation of parallelised tasks based on the deployment plan provided by the
Multi-Objective Mapper The PHANTOM API is implementedby either CUDA,
OpenMP, OpenCL, MPI or Pthread®lIs, based on these decisiofill in the context

of the Parallelization toolset, it is also provided some insight on the work developed for
task parallelization on FPGAs.

Section 3identifies and describe&Pls to support the development of PHANTOM
applications following acomponenbased approach. These APIs use the C
programming language arallow the e of generic parallelisatioriunctionalities,
addressing both synchronization and dataring mechanismsThis section also
presents the PHANTOM API for communications between CPUs and the attached GPU
devices, usetb describe functions intended to be executed in GPU devices.

The final section reports the currestatus of Model Based Tésyj development. A
study of the functional behaviour @ach use case is performed to understiwed
expected inputs and outpuibthe tests. A methodology for the definition and execution
of tests is provided, beingiso identified the tools to be used PHANTOM and how
the Model Based Testing module will interact with other modules of PHANTOM
architecture.

Pagevi Version2.0 2 NovemberR017
Confidentiality: Public Distribution

D3.17 First report on programmeand productivityorientedsoftware tools

1. INTRODUCTION
1.1 SCOPE
This document reportthe progress ofll tasksexecuted in the context AVP3 i
i P r o gar-aamdn productivity oriented software tools.Figure 1-1 shows a
representation othe PHANTOM architecture Highlighted in redare the components
developedwithin the context of WP3 activitieShesecomponents are the PHANTOM
Programming API, th@arallelizationToolset and the Model Based Testing.
APP'E;?:?E:;;l S/Slareqn:‘??;'n;nt: l configL?}/aSI‘iizl App\icano;;, (::"rgu r:l(:z l\/10_|%eslt i?]z;sed
A [Programming model }—
PHANTOM application l
(“Environment)) st exution
Components & Parallelization toolset [Multi-objective mapper]
o -Oompilalion nfiguration 2 g sl Optimized deployment plan Monitorin|
% components dat| control
oo quast ~ % in & components
IfPIaIforLT " Monitoring library datl);normg [Deployment manager]
W= e | R ey s
A———— - N
/Monitoring\ Resource manager
E=lvel Monitoring inle(esc/tsi:ﬁ?s1
— s YRS) v paton
E S FPGA Separable domains
& ﬁ ______ _.999
) el
S ‘—QQQ J Secure
AN J ! T execution
L g !)
Figurel-1: Modules of the PHANTOM architecture addressed in WP3
The Parallelization Todset, which will be discussedin section 2, identifies
parallelizable sectianof the PHANTOM components provides tlem to the Multr
objective Mapper andif the mapper elects to use a parallelisation scheme for that
componentimplementst.
The PHANTOM Programmininterfacedetails and implements ttemmuncation and
data sharing between the different components that compose a PHANTOM application.
This is described in section 3.
Modd Based Testingorrespondto a toolset dedicated to performing the testing of the
PHANTOM application both helpingdevelopes totest the functional beviourof the
applicationand providingmetrics to help the MukobjectiveMapper on the decision of
parallelization plan. This component will be described in section 4.
2 November2017 Version 2.0 Pagel

Confidentiality: Public Distribution

oy

D3.171 First report on programmeand productivityoriented software tools A LT M

1.2 PHANTOM APPLICATION PARALLELIZATION APPROACH

The PHANTOM programming model for applications (see D2.1 for details) follows a
componenbased approachi the application is constructed as a set of individual
components Kigure 1-2). Components have their own thread(s) of control and are
independent. They do not share data or communicate, except where explicitly
enumerated by the design of the application. The enumeration of components and their
shared data isalled the Component Network

Component B

Figurel-2: Componentbased PHANTOM application

The components are separate processes and can thus benefit from deployment on
distributed hardware resources (see D4.2 forildet the PHANTOM heterogeneous
infrastructure testbed). The programming model provides the notion of communication
channels, through which the components must communicate with one another in order
to exchange the data or synchronise the execution (sicbred i r ect i onal A q
bidi recti onal fAsharedo, see more in D2.1).

Since the PHANTOM programs are running on different hardware and thus do not share
any common compute resources, they can be treated as fully parallel executions. In
order to synchmiise the execution of application components in accordance with the
application logic, the programs might use sync messages (which are enumerated in the
Component Network).

The componerbased execution constitutes a basic level of paralleliscoarse
graned. Coars@rained parallelism depends on the application logic and is enforced by
the application developer through the programming model (and the associated execution
environment of the PHANTOM platform).

The next parallelisation levél fine-grained @rallelismi can be achieved inside the
individual components and aims to fully utilize the available parallel compute power
(such as CPU cores, GPU kernels, or FPGAS). -§aamed parallelism requires a
special framework the Parallelization Toolset.

Page? Version2.0 2 NovemberR017
Confidentiality: Public Distribution

D3.171 First report on programmeand productivityorientedsoftware tools

PARALLELIZATION TOOLSET
The Parallelisation Toolset is responsible for the identification of concurrent regions in

the application code, for sourtesource code transformation to implement
parallelisation, and for considering pspecified requirements drthe decision of the
Multi-Objective Mapper described in D2.1.

Runtime

Static

g

g =

i

o 5 =1
3

5 [}

=l

Applications in System maodel, and System
C(++) code requirements configuration

Programming model

PHANTOM application l

Maodel Based
Testing

Application, system model,
and configuration

Model-based

test generation

Components &
[@

Parallelization toolset

Synthesis

Deployment Tools &
tools Binaries

Platform
Infrastructure

O

Monitoring library

Parallelized
components

Monitoring
data

[Multi-objective mapper

] platform

Optimized deployment plan

Optimized deployment
plan & components

Deployment manager }

A Test execution

Monitoring Test logging &
data control
L

Execution
control

Configuration

Runtime metrics
Historical i

Resource

Binaries &
configuration

r

A

(Mnnitoring\

Server B
Meonitoring

.
i

C__J _@ _______ > o

oo
co

Resource manager

05/ System SW

Multicore CPU

GPU
~
T

Hardware platform

Separable domains

System
interactions

specification /

Secure
execution

/

Figure2-1: Parallelization Toolset positioning in PHANTOM toolflow.

Since PHANTOM uses a component based programming model (as desciikied)in
the Parallelisation Toolset retrieves the components which compose the PHANTOM
program, analyses and transforms them in order to 1) replicate them to many identical

copi es

components which exploit GPUSs,

environments. The first operation is performed by the Code Analysis described in

FPGAs,

SMP multiprocessors or

t hat run on different 6 s | ionseok O

Cloud

section 2.2, which provides appropriate parallelization information to the -Multi
Objective Mapper. Tén the latter functionality is performed by Technique Selection
(described in section 2.3), driven by the mapping decision of the -Mhbjactive

Mapper and assisted by four suawlsets, which process the components towards a
specific platform architecter The suloolsets consist of:

T

= =4

CPU Toolset (CT) for transforming components targeting shared memory

uniform memory access (UMA) or namiform memory access (NUMA), cache
coherent, symmetric multiprocessing (SMP), CPU architectures
GPU Toolset (GT) whichransforms components for graphics processing units
(GPU) implementation
FPGA Toolset (FT), handling components for FPGA implementations
Cloud Technologies Toolset (CTT): Transforms components for Cloud

environments

2 November2017

Version 2.0
Confidentiality: Public Distribution

Page3

of

{55 PHANTOM

D3.171 First report on programmeand productivityoriented software tools Ry

This document primarily considers t#U Toolset and GPU Toolset, whilst the rest of
the subtoolsets will be described in future deliverables of WP3 and WPA4.

2.1 USE CASE REQUIREMENTS
The Parallelisation Toolset is one of the main components of PHANTOM framework
and it will transform and generfparallel code for the heterogeneous platforms that
comprise the infrastructure of PHANTOM. Its operation is therefore significant for all
three use cases: Surveillance, Telecommunications andRéigormance Computing.
In general, the use case requiremserefer to the support and the capabilities of code
generation, support of heterogeneous platforms, support of parallelisation APIs and
programming languages, as defined in D1.1. The addressed requirements arevihe follo
ing:
Req. No. Requirement Overall Priority
U3 Parallelization of sequential application code, when compleme SHALL
by parallelization instructions provided by the user
U4 Automatic identification and parallelization of regions of sequet
application code SHOULD
us Support formulti-threaded concurrent tasks, including commani SHALL
tion and synchronisation
ué6 Support of parallelization, influenced by rumctional requie-
ments information SHOULD
u7 Support for communications datentric applications (e.g. autot SHALL
ic scalingof components to the actual size of data to be proces
us Support for componeriased application design SHALL
ul4 Exploitation of SIMD instructions sets provided by CPUs SHOULD
ui19 Generation of target dependent parallel code fanatdatory
target platforms without user involvement when sufficient aamno SHOULD
tions are provided.
uz21 Automation of transferring data to/from different memories at:c SHALL
ing to the component data model
uz22 Support for indication of applicatidmocks to be parallelized SHALL
u23 Support for indication of data dependencies, defining how data SHALL
be partitioned/split among the parallel application components
uU32 Support for application source code developed in C SHALL
uU33 Support forhigher level language such as Java and C++ MAY
u37 Support for exposing the generated parallel code to the user SHALL
u3s User modifications of the generated parallel code subjeetto r
strictions or protected segments SHOULD
2.2 CODE ANALYSIS
The main task of the Code Analysis is to
provided application and perform anal ysi
along with transformation, with emphasis on loop and task parallelization.
2.2.1 DesignSpecifications
Code Analysis retrieves the Component Network (described in D1.2.) which is provided
by the user and stored in the PHANTOM Repository. Code Analysis parses the
Component Network in order to identify the upeovided components along with their
Paged Version2.0 2 NovemberR017

Confidentiality: Public Distribution

D3.17 First report on programmeand productivityorientedsoftware tools

source codewhich are stored in the Repository. Then the tool performs its processing
according to the workflow depicted in the following figure:

—

Component parallelization

e

B Transformed
Code analysis Components +
« Structural representation Parallelization

- Simplification directives

* Dependency test
.k Loop transformation

Repository

A Parallelized
A Components
»

h = = >

s e e
\\

Figure2-2: Code analysis positioning in PHANTOM tdlolw

The first operation includes the creation of a structural representation (i.e. parse tree as
depicted inFigure 2-3) of the source code of each compatevhich will facilitate the
identification of the variables and functions, important for loop and task parallelization.

assignment
/ statement \
identifier = expression ;
|
3 / I \\
expression - expression
| |
identifier number
| I
Y 3

Figure2-3: Example of source code structural (tree) representation.

Based on the mictural representation, the analysis will attempt to further simplify the
source code in order to further facilitate the loop and task parallelization. The code
analysis is then performed by searching the simplified source code for data
dependencie$10][11][12], that could prevent the components parallelization (using
tools such as COINfB], CETUS[9]) . The next step i1is the i
and variables that can be parallelized, where the tool annotates them as parallelizable or
not according to the depéency test outcome. In case a loop is parallelizable, the code
analysis transforms the parallelizable loapsiables attributes (e.g. iteration simait)

with specific PHANTOM directives (e.g. phantom_slice_size()) that enable the
selected loop varidés to be further parallelized and the component to be replicated.

2 November2017 Version 2.0 Pageb
Confidentiality: Public Distribution

D3.171 First report on programmeand productivityoriented software tools

2.2.2

Finally, the analysis exports the parallelization annotations/directives which provide the
maximum number of possible parallel components to the NDidjective Mapper
module (described iD2.1).

Implementation Details

The Code Analysis is a set of classes and functions implemented in Java, using
appropriate XML libraries to be able to parse and modify XML documents. The input of
the Code Analysis is the Component network XML document dred specified
componentsd source codes (at the current
will be furtheranalysed

Then the Code Analysis uses ANTLR] (see also D4.1) tool to parse and create the
structural (tree) representation of each identified component. An example of the
ANTLR operation is provided in the following figure:

grammar Expr; $ antlrd Expr.gd

prog: (expr NEWLINE)* ; $ javac Expr*.java ;?{

expr: expr ('*'|'/") $ grun Expr prog -gui

expr \n
expr 100+2+34 /,,/f\\\
| expr ('+'["'-") ~D expr + expr
expr | /K

| INT 100 expr * (‘!T}l

| (' expr ') 2 34

NEWLINE : [\r\n]+ ;
INT : [0-9]+ ;

Figure2-4: Example of ANTLR parsing. (Picture from ANTLR frameyidyk

ANTLR stores the exported parse tree in a Java form that is aligned with the rhava fo
of the Code Analysis and simplifies the following steps of the analysis.

In order to achieve a more efficient analysis of the source code elements (declarations,
expressions variables), Code Analysis employs the CETUJ3p¢ee also D4.1) in

order to provide an intermediate representation between the parse tree and the source
code, as shown iRigure 2-5, that will consist of the objects that are more meaningful

for the parallelization process (e.g. for, while, loops, loop size, loop iterators, etc.).

Program

TranslationUnit

VariableDeclaration

/ }ed ure

CompoundStatement

Figure2-5: Example of intermediate representation using CETOIS

Page6

Version2.0 2 NovemberR017
Confidentiality: Public Distribution

5 PHANTOM

Waw ey
awe’

D3.171 First report on programmeand productivityorientedsoftware tools

The next step consists of code simplification in which @uele Analysis attempts to
transform the source code assignments and operations in a form that will facilitate the
loop and task parallelization (e.g. simplifies mathematical operations). The Code
Analysis is currently using CETUS functions for code sinmgaiion but also other
refactoring tools are under investigation, such as CodeRjisind AutoRefactof4].
Specifically, the Code Analysis will execute the single variable declaration function,
which rewrites variable declaration to achieve single variable per declaration. Then it
executes induction substitution which rgo@es and substitutes induction variables in
loops that take the form of iv = iv + ex[8]. Assignments of this form prevent a loop
from being parallelized due its data dependence, since variables inside a loop cycle
depends on the values assigned in other cycles. The CETUS induction substitution will
transform these assignments to a form that does not include significant data
dependencies, thus enabling loop rglalization. This substitution process is
exemplified in the following figure.

simple

. induction [ind = K
ind = k vadrial;Ies " 0 P H
T for (i=1; i<n; i++){
for (i=1;i<n; i++}{ |— . .
ind = ind + 2 A2 IE ()
A(ind) = B(i) }

}

Figure2-6: Example of code simplification

After the code simplification, the Code Analysis will perform one of the most
signficant tasks which is the identification of data dependenfl€g§[11][12]. As
aforementioned, the Code Analysis will give emphasis on searching for loops that are
parallelizable, since they consume most of the execution time ofuarge] program.

In case a loop includes dependencies between its instructions it cannot be parallelized
without affecting its initial context and operation. These situations require the execution
of code transformation to eliminate the data dependendibe. CETUS data
dependence analysis framew@® gathers dependence information for array accesses
within loop nests and creates a data dependence graph, on top of which it performs
conventional dependence tests, such as the Banerjegl3d44] and the Greatest
Common Divisor tesfl5]. In case that a loop includes data dependencies that cannot be
resolved then the loop is characterized as not parallelizable. Some data dependencies
can be resol ved either by CETUSGOG s con
modifications and algorithmsThe current version of Code Analysis extends the loop
dependence handling by introducing a custom modification of the CETUS testing to
enable loop transformation towards the PHANTOM parallelization requirements. For
example, in case of a specifictypecbht a dependence i n a nAfor
by iteration size, the code analysis wil
by substituting the iteration size with the PHANTOM specific directive
(phantom_slice_size()), thus each compuneill execute the loop until the size of the

each slice, as shown gure2-7.

2 November2017 Version 2.0 Page7
Confidentiality: Public Distribution

D3.171 First report on programmeand productivityoriented software tools

/*

for(int i = 0; i < 1024; i++) | PHANTOM Comment: Loop# 0 is—parallel
output_sum/[i] = data[i] =* ctrue
(i+4) * (i—16); */
1 for(int i = O;
i < phantom_slice_size ():
i++) |
output_sum|[i]= data[i] =*

(i+4) = (i—16);

Figure2-7 Example of a parallelizable loop

Data dependency test is an aspect that can improve loop parallelization and is
investigated for the future versions of the Code Analysis. Since, PHANTOM addresses
parallelisation of components targeting heterogeneou®ptat, more data dependency
algorithms will be investigated, considering also range analysis aspects for future
versions.

The final step of the Code Analysis includes the exploitation of the achieved
parallelization level of the analysed components. @halysis edits the Component
Network XML document where, for each component, it adds the maximum number of
possible parallel components (and communication objects accordingly), as described in
the following figure:

<!-- Components Description —->
<component name="A" type="asynchronous">
<PT:parallelisation-directive max number="64" name="subcomponents" set-by="PT"/>

Figure2-8: Example of parallelization directive

The above figure depicts an example of
which provides the maximum number of possible parallel subcomponents, for a specific
component (i n ntemits naamee 6 Ad 0 MpP a This inf
Multi-Objective Mapper module (described in D2.1) to further replicate the
parallelizable components, improving the mapping outcome and overall efficiency.

2.2.3 Demonstration/Example usage
The Code Analysis isvaluated in terms of its ability to identify parallelizable loops in
the source code of the user provided components. The current testing scenario consists
of the following steps:
1. The Parallelization Toolset retrieves the component network from thetogos
2. The Code Analysis parses the components specified in the component network

3. The identified loops are tested for data dependencies

Page8 Version2.0 2 NovemberR017
Confidentiality: Public Distribution

PHANTOM

D3.17 First report on programmeand productivityorientedsoftware tools

4. The parallelizable loops are transformed accordingly, with the addition of

PHANTOM specific directives

5. The Code Analysigxports the parallelization directives to the Component Network

that will used by MOM.

The following picture provides a test run of the Code Analysis on a custom source
component (in the C/C++ language), along with a Graphical User Interface that helps
the user to execute the code analysis.

[F7)

PHANTOM Parallelisation toolset

Analysis results

Analysis duration

4532ms

aigs- . WINGS ICT Solutions Ltd.

Code comparison

Initial code

Detected loops

Parallelisable... | Parallelisation nirq

Component
A
B

1
7

1
0

64 max# compone,
1 max# ¢

J

| ADDFILETORE.. |

Add |

Delete

RUN CODE ANALYZER

Set target filename

application_retd xml

Console log

can be parallelized using

PHANTOM loop transformation

contains Loop carried dependency x1 and
can be parallelized using

[Ac nullLoop# 0 contains Loop carfied dependency x0 and

HANTOM loop transformation

1

pres— CAssarsssssasasansassns 1
#include "stdio.h”

typedef int bool,
#define true 1
#define false 0

int main(void) {
inti,

#pragma phantom signal in ready
bool ready

#pragma phantom shared in input_data
double input_data[64]

#tpragma phantom queue 0 out output_sum
double output_data[s4]

Iidouble output_data
phantom_wail(&ready);
phantom_synchronize(input_data)

output_data[ij=input_data[i"(i+4)"(-16)

}
phantom_queue_put(output_data)

T S s——
#include “stdio h”

typedef int bool.

lioutput_cata += input_data(ij'i(i+2)

Analysis refinement

P CA%

#include "stdio.n”
typedefint bool;
int main(void)

inti:
#pragma phantom signal in ready

bool ready,

#pragma phantom shared in input_data
double input_datal§4)

#pragma phantom queue 0 out oulput_sum
double output_data[64]

 double output_data; */

int _ret_val_0:

phantom_wait((& ready))
phantom_synchronize(input_data)

[PHMTDH Comment Loop# 0 is-parallel true

)

lvm (i=0; i<phantom_slice_size; i ++)

)

output_datalij=((input_datali}*(1+4)1"(-16))
P output_data += input_datalij/(i+2); */

phantom_queue_put(output_data)
retum _ret_val_0;

rce®
#include “stdio.h
typedefint bool;

Figure2-9: Example of Code Analysis test

In the example of the above, the analysis identified all existing loops and was able to

parallelize one of them 64 times, wdit

t he

remai ni

ng

inf oro

parallelized due to unresolved dependencies. Current results show that the first version
identify

of

t he

Code
code, and is able to resolparalkelize a number of nenomplex existing loops. The

An

al ysi s

i s

able to

number and the complexity of the parallelized loops is expected to grow in the next
versions of the Code Analysis. Furthermore, the Code Analysis is tested in terms of

execution time since it might add amtrivial overhead to the overall optimization and

optimization process. Current results show that the execution time of the Code Analysis
has values in the range of a few seconds (<10s) for up to 5 source code components, but
more tests will follow in théuture implementations.

224

Dependencies/integration aspects

The Code Analysis is related to the PHANTOM Programming Model (see D1.2), from
which it retrieves the user defined Component Network, along with the application

components' source code to be paliakkel. Then, the Code Analysis transformation

phase uses the PHANTOM Communication APIs, protocols and corresponding

f un

cti

ons

t hat

wi ||

be

added i

n

t he

parallelization. Finally, the Code Analysis is stronglyatetl to the MultObjective

2 November2017

Version 2.0

Confidentiality: Public Distribution

Paged

col

D3.171 First report on programmeand productivityoriented software tools A

A=

2.2.5

2.25.1

2.25.2

2.2.5.3

Mapper (MOM) developed in WP2, since the analysis will provide the parallelization
directives facilitating MOM to explore the available number of the parallelized

components, in order to replicate them. Existing parallelizatois and frameworks

will be investigated to facilitate the deployment of the parallel design regions, as
suggested by WP1, on the heterogeneous infrastructure, set up by WP4.

Innovations beyond the stateof-the-art

Background technologies utilised idevelopment
XML Parsing Classes

The Code Analysis is a set of classes and functions implemented in Java, using
appropriate XML libraries to parse and modify XML documents. These librares
mainly required to process the Component Network that provitlemeaessary
information about the components.

Source code Parser

The Code Analysis uses the ANTLR tool (http://www.antlr.org/) to parse and create the
structural (tree) representation of each identified component. ANTLR stores the
exported parse tree in Java form that is aligned with the Java form of the Code
Analysis and simplifies the following steps of the analysis.

Intermediate Representation (IR) and Dependence Analysis

CETUS compiler infrastructure (https://engineering.purdue.edu/Cetus/) is usttk fo

|l R and the Dependence Analysis of the <co
both, creating an intermediate level of description for the code, and running some of the

| atest available dependence tamts on it,

Summary of new technologies/extensions developed
High-Level Annotations and Parallelization Directives

Code Analysis was extended with certain functionalities designed to provide helpful

i nformati on about t he C 0 mp oeh anndtafods areo d e .
produced by analysing the results provided by CETUS, as well as directives about
components parallelization capabilities are added in the component network,
information that will be used for the functionality of the Mfltbjective Mappe

Early/Full Prototypes functionality
Early-First Year Prototype

The component model is being successfully extrartad the Component Network to

be used by the rest of th€ode Analysié functionalities. Tl
component s06 cmpldesuccessfully the EETWSocongiler infrastructure

and locate certain parts of the code that do not seem to have any dependencies, thus, can
be parallelized. According to the information extracted by the Code Analysis,
parallelization directives are swessfully added to both the Component Network @and

the sourcecodeof each component

PagelO

Version2.0 2 NovemberR017
Confidentiality: Public Distribution

D3.171 First report on programmeand productivityorientedsoftware tools

2.3

231

Full Prototype and Next Steps

Driven by the continuous research that is being done on automatic parallelization, other
tools are being compared with CETUS, with new teghes at their disposal and more
capabilities. In specific, the ROSE Compiler has already been embedded in the PT and
is currently being tested against CETUS with promising resaisvell aPLUTO +

Polly (with its use of the Polyhedral Modelh addiion, other code analystsols will

also be investigated in the context of source code simplification and to further provide
more facilities in code transformation and dependence analysisegard to the
development of the latest parallelization teche&available.

TECHNIQUE SELECTION

The Technique Selection (TS) operation is performed after the execution of the Multi
Objective Mapper, in order to receive its mapping decision and produce the
parallelization indicat i ontsguidenhe Depleymenh e c
manager on the generation or activation of the actual parallelization functions.

Design Specifications

The Technique Selection receives the MOM outcome, indicating the mapping decisions,
along with the platform description and tt@mponent network to further decide on the
best parallelization API for the parallelization technique (e.g. OpenMP, threads
communicatio, MPI, etc.). Furthermore, TSwill provide information to the
PHANTOM API execution management functions, developedthi@ context of
PHANTOM to initialize/finalize important functionalities of low level communication
APIs, applied to all components that will use those ARlg. in case there are more
than one pthread component these functions initialize mutex variablesge functions
facilitate the Deployment Manager with the adoption and execution of low level
communication APIs. TS functionalities are detailed in the following figure:

/ Component parallelization

= Transformed
Components
+

Parallelizatior
directives

y

Opt. Deployment plan
+Platform description

+Componefit network
—

(Technique selection

+ Parsing MOM’s
indication

» Decision for
communication API
Annotation

\ replacement Paralielized
I Components

Repository

2 November2017

Version 2.0
Confidentiality: Public Distribution

Pagell

A=

D3.171 First report on programmeand productivityoriented software tools A

Figure2-10: Techniqueselection positioning in PHANTOM toflbw

As depicted in the above figurBigure2-100 TS f i rst parses the
optimized deployment plan) in order to:

1. Classify the components depending on the type of platform to which they are
mapped,;

2. ldentify the interacting@mponents of the final deployment.

Then, the TS operation executes a fast and low complexity decision mechanism which
selects the appropriate lelevel communication API (e.g. OpenMP, MPI, OpenCL)
that is the best fit for the components, according to peeiSed mapping to physical
resources (processing elements).

Furthermore, TS provides information regarding the PT techniques selection by editing
PHANTOM API functions with annotations that will facilitate the Deployment
Manager operation based on exigti parallelization APIs. For example,
#pragma phantom MPI_Send

In addition, the existing communication protocol annotations (#pgagma phantom
shared in data), are replaced by lower level communication directives#feagma
phantom MPI_Send(), thatindicate the Deployment manager to generate or activate
the actual parallelization functions.

2.3.2 Implementation Details

The Technique Selection tool is implemented in Java and similarly to the Code Analysis
it uses XML libraries to parse its input and geterigs output. The input to TS is the
Optimized Deployment Plan (in XML form) provided by the MOM, the Component
Net wor k XML document and the specified
supporting C/C++) along with their header files that will be furdrexlysed

The first step of the operation include
optimized deployment plan along with the XML parsing of the Component Network in
order to correlate the information from the two documents. The current implementation
considers the following component attributes:

Table2-1: Component attributes for Technique Selection

Component Attributes

Mapping name: e.g.
component_A_1 map

Mapping type: e.g. processing
Component name:e.g. A_1
Componentid: 1

Subcomponents: e.g. 32

Pagel2 Version2.0 2 NovemberR017
Confidentiality: Public Distribution

5 PHANTOM

Waw ey
awe’

D3.171 First report on programmeand productivityorientedsoftware tools

Processor name: e.g. P1
CPU-name: e.g. CPU2
Device Type: CPUbased

The first attribute is the mapping name, relative to the name of the component. Then the
mapping also includes a mapping type, whiaticates whether the mapping refers to a
mapping of a component to a processing e
of a communication object (tagged as MfAco
buffer. In addition, TS considers the componename, id and also the
ASubcomponent so attribute, whi ch refer:
subcomponents of this component. TS considers the processor name, the CPU name
and the Device Type (e.g. CHidsed) to which a component is mapped.

TS specifes the communication objects and their attributes in order to assist the
technique selection process (e.g. if memory type==local, use pthreads) while also
assigning specific attributes to the PHANTOM protocols and APIs, used inside the
component sode (s gueweeget(ar, varsour ce=2¢) . The
communication object attributes are provided in the following table:

Table2-2: Communication object attributes for the Techniques Selection

Communication object Attributes

Mapping name: e.g.
communicationObjectBF1_1_map

Mapping type: e.g. communication
Component name: e.g. BF1_1
Communication object id=0
Memory name: e.g. MEM1
Memory type: e.qg. local
Source name: e.g. A 1
Source id:e.g. 1
Target name: e.g. B

Targetid: e.g. 0

Similar to the component attributes, the communication object attributes are the
mapping name, relative to the name of the communication object, the mapping type

whi ch i n this case icomponesit ndme aefemiognto ¢hat i o
communication objects name and the id of the object. In addition, TS considers the
physical memor yods name (or channel / buf f

mapped, along with its type (local or shared). Furthermo&,néeds to know the
source component namnied 0alaonndg twhiet ht airtgse t i o
A T a ri gdeot.

2 November2017 Version 2.0 Pagel3
Confidentiality: Public Distribution

A=

D3.171 First report on programmeand productivityoriented software tools A

The second step includes t henoper tospeafy o°f
the attributes of the variables that have to be peatkée.g. sent/received) through the
PHANTOM functions. This operation identifies the following attributes:

1. The variables to be pushed in queues or memories #prggma phantom
gueue out | output_image L |)

2. The variabl eds att rze (2.g.tdaukle | outpytpireage Ld|i me
[64])

3. Identification of communication protocols inside the components (e.qg.
phantom_queue_put (é))

In the third step, TS decides on thpecific lowlevel communication API for each
component (e.g. components A and B will use MPI but component C will use CUDA).
The selection process iterates through the communication objects, where for each of
them identifies the source (and target compésieand selects the appropriate {@wel
communication APl according to the communication type (e.g. memory/Ethernet),
source processor type, target processor type. The following listing provides an example
of a lowlevel communication API indication:

If (source processor type == CPU) and (target processor type == CPU) and (communi
type == local memory)

{
}

return phantom_Pthreads;

Listing2-1: Example of low level communication API

The current version of T8onsiders the pthreads, OpenMP, MPI, CUDA, OpenCL
APIs (also described in D4.1) for the ldawvel communication APIs.

The final step includes the attribute replacement and code generation inside the
component s&6 s oourr RHANTOM AR headars and furstions. In this
direction, TS parses the PHANTOM API header files and replaces comgpearific
attributes with all the information der.i
order to provide the PHANTOM APl commuaition functions and protocols, with
appropriate information, regarding their ldewel implementation. The following
listing provides an example where pthreads, OMP and MPI specific attributes were
added to the component.

Pagel4 Version2.0 2 NovemberR017
Confidentiality: Public Distribution

D3.171 First report on programmeand productivityorientedsoftware tools

//[Communication objects IDs drieatures

#define PHANTOM_NUMOFCOMMS 2

static int phantom_source_id[PHANTOM_NUMOFCOMMS]={1,2};

/[The direction of the communication object: OyNIl, 1.OUT-push, 2.INOUFboth/update
static int phantom_direction[PHANTOM_NUMOFCOMMS]={0,1};

/Inumber of cormponents that use a relevant toolkit
#define PHANTOM_PTHREADS_COMPS 3
#define PHANTOM_OMP_COMPS 0

#define PHANTOM_MPI_COMPS 0

Listing2-2: Sample of component attributes definitions

The above information istored in specific structures initialized at the execution of the
PHANTOM application and is used for the proper parallelization of the components and
the proper execution of the PHANTOM API functions. The following listing shows an
example of a structutte store this information.

struct phantom_componentlist
{
int id;
int dev_prc_type;
int ext_api;
int cmpprocess; //The process/processor in which the component belongs
int cmp_slice_size;
int cmp_offset;

Listing2-3: Example of PHANTOM API structure

Finally, the existing communication protocol annotations (pltantom_queue_put
(dat § Mre replaced by lowevel communication directives (e.gudamemcpy
(dat @ that indicate the Deployment Manager to generate or activate the actual
parallelization functions. TS replaces the arguments of the PHANTOM API functions
with the specific communication object attributes, in order to match the function with
the appropriatstructure corresponding to the variable (e.g. output_image L) and derive

its attributes (e.g. sour ce, target- typ
| evel commands are considered in order t
used to foward the variables and the functions to the GPU device (e.g.
cudaMemcpyAsync(dev_in, simage, size_in*sizeof(double),

cudaMemcpyHostToDevice, stream[cmpid])).

2.3.3 Dependencies/integration

TS first interacts with the PHANTOM Repository from where it retrieussinput
documents and source code. The first part of the input, consists of the Component
Net work and the componentsd s ouiObjective ode.
Mapper in order to receive its outcome, defined as the optimized deployment $lan.

uses the PHANTOM APIs to select, generate or replace theldwghcommunication

2 November2017 Version 2.0 Pagel5
Confidentiality: Public Distribution

oy

v PHANTOM

D3.171 First report on programmeand productivityoriented software tools A

234

APIs with appropriate lovlevel communication AB and indications. Finally, TSends
the parallelized components to the Deployment Manager for further annotation
replacement, code and metadata generation.

Demonstration/Example usage

TS decides on the best ldevel communication API per component, but it also
matches the final depfment plan with the components and their communication
functions. In addition, TS replaces existing annotations and information witleleuy
annotations referring to lovevel communication APIs, facilitating the final
deployment of the parallelized cooments. In this direction, the current version is
evaluated in terms of its ability to select the appropriatelésw@l communication API,
according to the MOM outcome but also in terms of appropriate annotation
replacement.

The following paragraph includean evaluation scenario in which MOM has decided to
map three components of an example application to the same processor, on nearby
CPUs to avoid the communication overhead. Technique Selection is expected to:

1. Identify the interacting components to prai®@HANTOM APIs with relative
information (annotation replacement
number and the source and target of the communication objects;

2. Select an API that will introduce minimal communication overhead such as
OpenMP or pthreaq and

3. Generate appropriate lelevel communication APIs.

The following figure depicts a diagram that includes the MOM outcome with its
components and memories6 mapping.

Figure2-11: Mapping example foiTechnique selection demonstration

Since the components (in this case A_1, A_2, B) are mapped to the same processor and
the communication objects (in this case BF1_1 and BF1_2) are mapped on two local
memories, TS decides (based on the processor type egpth of the communication

type) that each component will run on a different thread using pthreads. To this purpose,

Pagel6

Version2.0 2 NovemberR017
Confidentiality: Public Distribution

C

