

Project Partners: Easy Global Market, GMV, Intecs, The Open Group, University of Stuttgart,
 University of York, Unparallel Innovation, WINGS ICT Solutions

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

PHANTOM Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the PHANTOM Project Partners.

Project Number 688146

D5.2 – Integrated reference system

Version 1.0

2 April 2019

Final

Public Distribution

University of York, Easy Global Market, GMV, Intecs,
The Open Group, University of Stuttgart,

Unparallel Innovation, WINGS ICT Solutions

D5.2 – Integrated reference system

Page ii Version 1.0 2 April 2019

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Easy Global Market

Philippe Cousin

2000 Route des Lucioles

Les Algorithmes Batiment A

06901 Sophia Antipolis

France

Tel: +33 6804 79513

E-mail: philippe.cousin@eglobalmark.com

GMV
José Neves

Av. D. João II, Nº 43

Torre Fernão de Magalhães, 7º

1998 - 025 Lisbon

Portugal

Tel. +351 21 382 93 66

E-mail: jose.neves@gmv.com

Intecs

Silvia Mazzini

Via Umberto Forti 5

Loc. Montacchiello

56121 Pisa

Italy

Phone: +39 050 9657 513

E-mail: silvia.mazzini@intecs.it

The Open Group

Scott Hansen

Rond Point Schuman 6

5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of Stuttgart

Bastian Koller

Nobelstrasse 19

70569 Stuttgart

Germany

Tel: +49 711 68565891

E-mail: koller@hlrs.de

University of York

Neil Audsley

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325571

E-mail: neil.audsley@cs.york.ac.uk

Unparallel Innovation

Bruno Almeida

Rua das Lendas Algarvias, Lote 123

8500-794 Portimão

Portugal

Tel: +351 282 485052

E-mail: bruno.almeida@unparallel.pt

WINGS ICT Solutions

Panagiotis Vlacheas

336 Syggrou Avenue

17673 Athens

Greece

Tel: +30 211 012 5223

E-mail: panvlah@wings-ict-solutions.eu

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

0.7 Initial release for partner review 25 February 2019

0.8 Updates according to component integration results 29 March 2019

0.9 Further updates and editing 1 April 2019

1.0 Final Release 2 April 2019

D5.2 – Integrated reference system

Page iv Version 1.0 2 April 2019

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Objectives .. 1

1.2 Platform Overview... 1

2. Inter-Component Communication: Repository.. 4

2.1 Overview .. 4

2.2 Interface .. 5
2.2.1 Queries .. 5
2.2.2 Notification Mechanism .. 6

2.3 Security integration ... 7

2.4 Infrastructure for testing the Inter-Component Communication ... 10

3. Integrated reference System ... 12

3.1 Description .. 12

3.2 Implementation .. 15

3.3 Installation and Usage guide ... 16

4. Requirements Assessment .. 20

5. Conclusions .. 27

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page v

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

This deliverable presents the PHANTOM Framework as an integration of the several

PHANTOM tools previously developed. Is starts by presenting one of the key elements

in the integration – the Repository – as it enables tools to exchange information between

them and allow the implementation of a “wait-and-run” model where tools wait for the

output of other tools before starting its activity. Moreover, that repository also enables

the execution of the security mechanism provided by the Security Framework.

This deliverable also describes the information flow between the PHANTOM tools,

through the different stages of the application analysis and execution implemented in a

set of 2 virtual machines – for FPGA specific tools, and another for the remaining tools.

It is also presented as set of scripts to help the user on the management of the virtual

environments and on the configuration and execution of PHANTOM tools for a specific

application.

At last, is shown is this deliverable the evaluation, for PHANTOM developers, of the

requirements related with the overall design and capabilities of the PHANTOM

framework. From a total of 55 requirements, 53 were considered „Fully‟ met and 2

„Partially‟ met

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

1.1 OBJECTIVES

This deliverable aims to be used as manual for PHANTOM users to get an overview of

the tools that compose the PHANTOM framework, how the several tools are organised

and communicate among them to achieve PHANTOM objectives. In this context is

presented and described a tool developed to support the communication and the

activities of the other components – the Repository.

This deliverable also presents the PHANTOM Integrated Platform, describing the

collection of tools developed to support the configuration and usage of PHANTOM

tools. Alongside to these tools, this deliverable introduces a virtualised system where

the PHANTOM tools, and its dependencies, are deployed and configured. Such system

provides newcomers to PHANTOM framework with ready-to-use environment where

they can get a first impression of the framework.

As this document describes the collection of PHANTOM tools as an integrated

framework, in this deliverable is also presented the final evaluation of the requirements

related with the PHANTOM framework design.

1.2 PLATFORM OVERVIEW

A brief introduction to PHANTOM architecture is needed to better understand the role of

each PHANTOM tool on the overall PHANTOM framework. Figure 1 presents an

overview of the flow between the tools that compose the PHANTOM platform. The top

of the figure shows the Design stage, where the application is analysed, and deployment

strategies are devised. This stage starts with the user's inputs, labelled as the

Programming Model. These inputs are analysed, and the application components‟ code is

restructured, appropriately annotated, and later parallelized by the tools. This is followed

by the development of an optimized deployment plan depending on the user‟s

requirements.

The lower part of the figure shows the components‟ interaction during the runtime of

phantomized applications.

The following components are briefly described as the understanding of their objectives

and roles is important to better understand the following sections.

Programming Model

The programming model leverages a functionally-oriented component-based

methodology to the application design. The developer structures their application as an

interconnected network of communicating software components, each of which follows

specific guidelines. Along with the application source code, the user provides an initial

deployment of their application, which defines where the components of the application

may be located in the target hardware. This may be underspecified, allowing the platform

to optimise the deployment according to monitoring and testing results. The developer

D5.2 – Integrated reference system

Page 2 Version 1.0 2 April 2019

Confidentiality: Public Distribution

also defines non-functional requirements of the components, in terms of response time,

power usage, security, or many other application-specific metrics.

Figure 1: PHANTOM architecture

Parallelisation Toolset

This tool analyses the component‟s source code and transforms it according to

parallelization directives for each of the targeted hardware platform‟s abilities. The

current version of the Parallelization Toolset design concentrates on two main

functionalities: Component Parallelization and Parallelization Technique Selection.

Parallelization can be achieved through injection of parallelization technology (i.e.

OpenMP, CUDA) annotations and generation of IP Cores, aiming to the specific platform

that the components are executed on.

Repository

The PHANTOM Repository is the integration data layer that can store the user‟s

components and serves all communication purposes between the user and the PHANTOM

tools as well as within the latter by endorsing RESTful protocols.

Multi-Objective Mapper

The Multi-Objective Mapper (MOM) has the task of defining an optimal deployment plan

for a PHANTOM application. This implies that MOM needs to take decisions on the

mapping of the parallelizable components and on the shared data communications

throughout the target hardware architectures (CPU, GPU, FPGA).

Components &

Configuration

Resource managerResource manager

Programming model

Applications in
C(++) code

Multi-objective mapper

MS

MS

MS

Monitoring
Sensors

Monitoring

Server

Monitoring library

Configuration Runtime metrics
Historical information

Hardware platform
specification /

Separable domains

Parallelization toolset

Resource
availability

OS/ System SW

GPU

FPGAMulticore CPU

Resource manager

Deployment manager

St
at

ic
R

u
n

ti
m

e

Repository

System model, and
requirements

System
configuration

PHANTOM application

Parallelized
components

Optimized deployment plan

Monitoring
data

Optimized deployment
plan & components

Binaries &
configuration

Secure

execution

Environment

Tools &

Binaries

Platform
Infrastructure

Compilation

Synthesis

Deployment
tools

Monitoring
data

Execution
control

System
interactions

OS

Model Based
Testing

Model-based
test generation

Test logging &
control

Test execution
platform

Application, system model,

and configuration

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 3

Confidentiality: Public Distribution

Monitoring Framework

The PHANTOM monitoring framework supports the collection and storage of monitored

metrics based on hardware availabilities and platform configuration. The target platform

of the monitoring client includes CPUs, GPUs, ACME power measurement kit and

FPGA-based platform.

Deployment Manager

The Deployment Manager is responsible for the final code generation / refactoring stage

which adds the communication and consistency code that is required by a given

deployment as well as building different parts of the project on the selected hardware

platforms specified by the Optimized Deployment Plan. Specifically, the Deployment

Manager generates the necessary files for the communication among components by

using the corresponding techniques (MPI and POSIX functions). Furthermore, the DM

generates the scripts that become available to the user for the compilation, linking, and

deployment of the binaries on the hardware infrastructure (CPU, GPU, FPGA).

Model-Based Testing

Model-based Testing (MBT) is used to carry out early validation and black box testing for

use case applications on the PHANTOM platform focusing global functional and non-

functional properties. It reads design specifications, including functional and non-

functional requirements, system behaviour descriptions and PHANTOM network

component descriptions

During early validation, the outputs are functional validation results and performance

estimation results. In test execution phase, the outputs are functional and non-functional

testing verdicts indicating if test cases pass or fail.

More details about the PHANTOM architecture can be found in Deliverable D1.3 -

Enhanced design for Cross-layer Programming, Security, and Runtime monitoring.

D5.2 – Integrated reference system

Page 4 Version 1.0 2 April 2019

Confidentiality: Public Distribution

2. INTER-COMPONENT COMMUNICATION: REPOSITORY

2.1 OVERVIEW

The PHANTOM Repository is an integration data layer that supports the exchange of

information and files between PHANTOM tools, as well as between PHANTOM tools

and the users. In particular, the Repository is in charge of store the user‟s components

(including alternate versions of those components generated by the PHANTOM

Parallelisation Toolkit) and serves all communication purposes between the user and the

PHANTOM tools as well as within the latter by endorsing RESTful protocols. Thus, the

Repository allows both the users and the platform tools to abstract from the distributed

and heterogeneous nature of the targeted hardware and serves a one-step

communication hub for all inter-platform communications.

The Repository has a clearly defined interface for storing and accessing the different

types of content to facilitate its use by different tools, which is described later in this

section.

Figure 2. PHANTOM Repository interface between PHANTOM tools, as well as between the latter and
the users, storing files and metadata.

Among the contents to be stored in the repository, we can highlight the programming

model provided by the developer, the test models and their results generated by MBT,

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 5

Confidentiality: Public Distribution

different versions of the generated code, deployment plan, and execution results such as

security logs and monitoring metrics.

In addition to data storage, the Repository will also provide a pub/sub (publish-

subscribe) mechanism for PHANTOM components to subscribe to data and be notified

when certain project folder or file is updated. This is useful in scenarios such as

PHANTOM users trigger the execution of an application when given input data, and

users are notified when the execution is over and output data is ready.

2.2 INTERFACE

2.2.1 Queries

This section lists the different operations available to interact with the Repository.

Those operations are read/write/list files and retrieve a zip file of a folder or single file.

For each one of the operations are shown examples and the possible responses. The

examples of the HTTP requests appear with underlined font, and the reply from the

server in italic font:

 Example of Testing the USER PERMISSIONS on different domains:

Test read permission of a registered user in the public domain (domain_public):

curl –XGET

 http://localhost:8000/permission?user=montanana@hlrs.de\&domain=domain_public\&access=r;

The expected response is (user_id must be present on the access policy):
200: Access granted

Test write permission of a registered user in a domain where has granted such

permission:

curl -XGET http://localhost:8000/permission?user=montanana@hlrs.de\&domain=domain_hlrs\&access=w;

The expected response is:
200: Access granted

Test write permission of a registered user in a domain where has NOT granted such

permission:

curl -XGET http://localhost:8000/permission?user=montanana@hlrs.de\&domain=domain_gmv\&access=w;

The expected response is:
403: Access denied

Notice that any USER NOT REGISTERED in the security-policy will get a

REJECTION for any requested access.

D5.2 – Integrated reference system

Page 6 Version 1.0 2 April 2019

Confidentiality: Public Distribution

 Example of query the domain of a single file:

Query for the domain of a file in the Repository:

curl -s -XGET http://localhost:8000/test_metadata?project=phantom_tools_on_HPC\&source=user\&Path=

mypath%2F\&filename=main.c

Example of possible response:
The domain of the file is: domain_hlrs

 Example of obtaining a new Token:

The other implemented functionalities require the use of a token as a way to indicate

that a user has successfully been identified and authenticated. To obtain a token, a user

must present valid credentials, consisting of a public user name and a secret password.

The credentials presented are checked against a table of stored credentials. Following is

an example of requesting a new token for a particular user:

curl -H "Content-Type: text/plain" -s -XGET

http://localhost:8000/login?email="montana@abc.com"\&pw="XXX" --output token.txt;

mytoken=`cat token.txt;`;

This operation will store the Token, which consists on a text string, into the variable

mytoken. The token serves as evidence that the requester has been authenticated, and is

used in subsequent requests to the Repository to access resources.

 Example of Downloading a file from the Repository:

Example of download request, parameters specify the file to be accessed:

curl -s -H "Authorization: OAuth ${mytoken}" -H "Content-Type: multipart/form-data" -XGET

http://localhost:8000/test_download?project=phantom_tools_on_HPC\&source=user\&filepath=mypath\&file

name=main.c ;

The expected response when the access is granted:
200: Access granted

The expected response when the access is denied:
403: Access denied

2.2.2 Notification Mechanism

This Repository allows users and tools to subscribe by using web sockets to get

notifications of changes to files on a project or to a particular folder. Such notifications

consist of forwarding a copy of the metadata JSON of the upload/updated files to only

those who have subscribed

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 7

Confidentiality: Public Distribution

In particular, the subscription for updates is done by stablishing a websocket connection

(ws://repository_address:repository_port/) and sending a request message in JSON

format, for instance for subscribing on updates on a particular project, or subscribe for

such project but only on particular source:

{“user”: “bob@abc.com”, “project”: “demo_hpc”}

Or

{“user”: “bob@abc.com”, “project”:“demo_hpc”, “source”: “user”}

The first field is the user id of the subscriber, which currently is used for debugging

purposes.

The notification message when a file is modified or uploaded consists on the metadata

in JSON format of such file, as for example:

{“project”: “demo_hpc”, “source”: “user”, “path”: “folder_one”, “filename”: “main.c”,

“domain”: “domain_public”}

On the GitHub are uploaded examples in Java and Python of applications that subscribe

to the updates of some project, and some type of source updates.

2.3 SECURITY INTEGRATION

The permissions-domain is defined for each file in their associated metadata that is

provided in JSON format, and then files associated with the same project can defined

public or private to the user group independently of the other files in the same project.

The field in the metadata which defines the access domain is named “domain”. The

value of this field can be “domain_public” when there is not any restriction on their

access, or another valid value defined on the uploaded access policy loaded into the

Security Server. More details about the specification of access policies are provided in

the Security Server section.

The Figure 3 shows an example of two different projects, and their files and folders

uploaded by users or different PHANTOM tools. The figure shows also the metadata of

two of those files, where one has public access while the other has restricted access to

only the users which belong to certain domain (as “domain_hlrs” in the figure).

D5.2 – Integrated reference system

Page 8 Version 1.0 2 April 2019

Confidentiality: Public Distribution

Figure 3. Example of metadata of two files on the same project. Each metadata in the figure defines a
different security domain.

The Figure 4 shows the interaction between the Repository and the NGAC-policy

server. In the figure, there are three different actors, first the developer (or user) and the

PHANTOM tools, second the Repository, and third the NGAC-Policy server. This

figure shows the interactions among them that are performed for every access request,

which consist of seven steps.

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 9

Confidentiality: Public Distribution

Figure 4. Description of the resource access.

Here is described the interaction of the Repository with the Security server. The Figure

doesn‟t show the Policy Server as part of the Repository because both run

independently. In particular, other PHANTOM tools can act as Policy Enforcement

Points (PEPs) and interact with the Policy Server.

The process starts with the first step (1) when a read or write access request is made to

the Policy Enforcement Interface of the repository. With such a request, the user or tool

provides a token
1
 as an authorization key.

In the second step (2), the Repository acts as Policy Enforcement Point (PEP)

identifying the associated user_id if the token is valid and requesting to the Policy

Query Interface of the Policy Server whether the user is authorized to access the

requested object. In particular, the access request is characterized by the user (or tool)

on behalf of whom the request is being made, the object that is to be accessed, and the

operation that is to be performed on the object by the access.

(3) The Policy Decision Point (PDP) computes the decision based on the received

request and the defined access policy. For such purpose, it requires the current policy

through the Policy Access Point (PAP).

(4) Policy Access Point (PAP) access to the current policy stored in the Policy

Information Point (PIP). The policy (or policies) in the PIP was previously loaded into

the PIP during initialization of the Server from a file containing an attribute-based

1
 A user can obtain as many different tokens as may be needed. Each token is a unique text string that will be used as

evidence that the user has previously been successfully identified and authenticated. Each token has associated some

additional values as the valid time interval for its use.

D5.2 – Integrated reference system

Page 10 Version 1.0 2 April 2019

Confidentiality: Public Distribution

security policy specification represented in a declarative language. The details of the

policy specification framework and language are presented elsewhere. Policies are

prepared for use by the Policy Server using a Policy Tool that enables a security

administrator to develop and test the policy without interacting with the policy server.

(5) It is the policy that determines whether the identified user is permitted to perform

the indicated operation on the named object. Based on the result of the policy

computation, the PDP will respond to the access request with “permit” or “deny” (5).

In the step (6), based on the reply from the PDP, the Repository PEP performs a read or

write access (according to the initial request) to the requested object.

On the final step (7), the Repository Server will return a success or failure message and

the requested object in the case of a read operation.

2.4 INFRASTRUCTURE FOR TESTING THE INTER-COMPONENT COMMUNICATION

Here, we provide a summarized description of the Infrastructure used for testing the

Inter-Component communication.

In order to facilitate the developing and debugging of the inter-component

communication. It was considered to provide online-uninterrupted service of the

different Phantom Servers and Managers. The Phantom Servers and Managers were

installed in an infrastructure accessible on internet at the IP address http://141.58.0.8.

(Notice that ports are modified from the default values to: Repository at port 2777, App-

Manager at port 2778, Monitoring Server at port 2779, Resource manager at port 2780,

and Execution Manager at port 2781).

The Figure 5 shows the structure infrastructure, located at the HLRS centre. In

particular, the PHANTOM Servers and Managers where installed in the computing

node labelled as “BackEnd”. While, the Node01 is used for running PHANTOM

applications.

Figure 5. Infrastructure for testing the Inter-Component Communication.

http://141.58.0.8/

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 11

Confidentiality: Public Distribution

The different services are available on different network ports, which are defined based

on the network protocol of the HLRS centre and the currently available ones, which

made the network-ports to be:

 Phantom Servers and Managers

 Repository App Manager Exec Manager Resource Manager Monitoring Server

Port 2777 2778 2781 2780 2779

Next, we provide a description of the characteristics of the components of the elements

in the Figure 5.

BackEnd Machine (here run the PHANTOM Servers and Managers):

1 × Chenbro 4U 17.5" Compact Industrial Server Chassis RM42300

1 × Gigabyte® Server Board - MD70-HB0 (Rev. 1,2)

2 × Intel Xeon CPU: E5-2680 v3 - 12 cores, 30MB L3 smart cache, 2.5 GHz, 4 mem. ch. DDR4 2133

MHz

8 × SAMSUNG DRAM 16GB Samsung DDR4-M393A2G40DB0-CPB - 2133 MHz, CL15 - Regis-

tered DIMM - Dual Rank - ECC

1 × GPU: Nvidia TeslaK80 - 2x Kepler GK210; GPU Clock: 560-875 MHz; Shading Units: 4992;

GDDR5 24 GB; 480 GB/sec; PCIe3.0 8GT/s x16

1 × Intel® Ethernet Server Adapter I350-T2 - PCI Express 2.1 x4 Low Profile - 1000Base-T x 2

1 × Hard disk: 500GB WD5003AZEX Black;

1 × SSD: 240GB Vertex460A

Node01 (for running phantom applications):

1 ×Intel Server Chassis P4308XXMHGC

1 × Intel Server Board S2600COE

2 × Intel Xeon CPU: E5-2690 v2 - 10 cores; 25MB L3 smart cache; 3.0 GHz, 4 mem ch. DDR3 1866

MHz

8 × Hynix Memory 4 GB DDR3 HMT351U7EFR8C-RD - 1866 MHz PC3-14900, CL13 - Dual Rank

- ECC

1 × GPU TeslaK40c - GPU Clock: 745 MHz; Shading Units: 2880; GDDR5 12288 MB; 288 GB/s;

PCIe3.0 8GT/s x16

1 × Hard disk: 500GB WD5003AZEX Black; 1 × SSD: 128GB Vertex450

Ethernet Switch (interconnects the elements located at HLRS):

1 × Cisco Catalyst 3750X-24T-S, 24 10/100/1000

Frontend machine (forwards traffic from internet to the different computing nodes):
2 × Intel® Xeon® E5-2609 v2, 2.50 GHz, 4-Core, 10MB Cache

8 × 8 GB DDR3

4 × 1TB SATA3-HDD Seagate Constellation ES.3

Network Storage System (NAS):
1 × Intel® Xeon® E3-1220 v3 3100MHz 8MB Cache 4Core

2 × 8GB DDR3

2 × 2TB WD Caviar Red NAS HDD 64MB

D5.2 – Integrated reference system

Page 12 Version 1.0 2 April 2019

Confidentiality: Public Distribution

3. INTEGRATED REFERENCE SYSTEM

The Integrated Reference System consists in a system where most of the PHANTOM

tools are deployed and configured to communicate with each other. This system

provides users of the PHANTOM framework (USERS) with a generic deployment of

tools that allow them to test most of the functionalities provided by PHANTOM.

3.1 DESCRIPTION

The set of PHANTOM tools communicate with each other following a defined

communication flow where outputs of a process of a specific tool can trigger a process

on another tool. The communication and coordination between the PHANTOM tools

are enabled and supported by a set of servers:

 Repository, supports the transfer of data (inputs and outputs) between

PHANTOM tools and with the USER;

 Application manager, allows tools to report its execution states (waiting for

inputs, running or finished), allowing other tools and the USER to evaluate the

status of each tool; and

 Execution manager, is used to register executions intents and to track that state

of the execution (pending, compiling, running, completed, and rejected).

PHANTOM tools can submit subscriptions to the servers and receive notifications when

files are updated/created, or when the state of a tool or execution is updated. This

subscription/notification system consists in the default control mechanism for execution

control of PHANTOM tools, aiming to reduce the amount of effort required from the

USER as it removes the need for control the individual execution of each tool. The

communication flow between PHANTOM components and with the USER is described

in Figure 6.

The flow starts with the PHANTOM USER uploading its application to the Repository

(1a) and performing the corresponding configuration of PHANTOM tools to subscribe

the processing of the application. This action creates a new entry in the application

manager (1b) required to enable tracking the progress of PHANTOM tools for that

application.

The first stage of the PHANTOM execution is called Static Analysis, corresponding to

the analysis of the application code and of the component network description. This

stage corresponds to execution of the Parallelization Toolset (PT) and the Model-based

Testing (MBT). Regarding to the Parallelization Toolset, in this phase is executed the

Code Analysis process (2a), where the code of PHANTOM application is analysed and

are identified loops and functions that can be parallelised, and the component network is

updated with parallelisation directives. In this step, it can also be started the execution

of the MBT testing process through the realisation of the early validations (2b). These

early validations are performed over the component network, which combined with the

results from previous executions (if available) allow to calculate some metrics that can

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 13

Confidentiality: Public Distribution

help Generic Multi-Objective Mapper in the finding of mappings that best satisfy the

user requirements.

Figure 6 - PHANTOM tools workflow

If the Code Analysis finds pragmas, defined by the USER, to implement a specific

function for a FPGA target, then Code Analysis signals on the Component Network‟s

description that the corresponding component should have a FPGA implementation.

After the conclusion of the Code Analysis activities, and corresponding indication in the

Application Manager, the IPCore Generator (3) receives the corresponding notification

D5.2 – Integrated reference system

Page 14 Version 1.0 2 April 2019

Confidentiality: Public Distribution

and analyses the produced Component Network. If a component has FPGA as target

and no specific implementation is identified, then the IPCore Generator analyses the

code of that component and attempts to generate the FPGA implementation of the

function identified by the USER. In case of success, the FPGA related artefacts are

uploaded to the Repository and the Component Network is updated with the

corresponding paths.

In the next step, the Generic Multi-Objective Mapper (MOM) (4a), after receiving the

notification of the conclusion of Code Analysis, IPCore Generator and MBT, analyses

the component network and the platform description files to create and refine multiple

deployment plans for deploying the application‟s components across the available

hardware. This deployment plans will be optimised to better meet the USER‟s

objectives and requirements.

After being generated, the deployment plans are analysed by the Offline MOM (4b) in

order to perform an initial check if the real-time constraints can be satisfied using the

selected mapping. This validation aims to exclude deployments that, due to the

hardware specification, will not be able to satisfy the real-time requirements. However,

this validation does not provide any confirmation about the real fulfilment of the real-

time requirements as it must be verified through the execution of the application. After

the identification of the valid deployment plans, these are uploaded to the repository and

an execution request is submitted to the Execution manager for each deployment plan.

MOM has a cyclic behaviour, always waiting for the results of executions and MBT

assessments to refined and create new deployment plans, being this stage called Design

Exploration. As such, MOM status in the Application Manager will not assume the state

of “finished” and will alternate between “waiting” when waiting for the other

PHANTOM tools or for the results of the execution of applications, and “running”

when generating new deployment plans.

When the Execution Manager receives an execution request (5), a new entry is created

on the table of executions with the state “pending” and, by default, the Parallelisation

Toolset – Technique Selection receives a notification and starts its execution. Possible

other options are to wait for USER (4c) or MBT (4d) input to before starting the

processing of an execution request.

The start of Technique Selection (6) activity represents the beginning of the Building

Stage. This stage is represented with the execution request having the status

“compiling”. In this stage, parts of the component code are replaced to match the

hardware and conditions and decisions specified on the deployment plan. When the

Technique Selection finishes the refinement of the component‟s code, it updates the

Application Manager with the “finished” status, which will trigger the execution of the

Deployment Manager.

The Deployment Manager (7a) is responsible for preparing the application for the

compilation and deployment processes. This preparation consists in the generation of

the deployment scripts and Makefiles to provide the application with the required

compilation dependencies. By using the information on the Hardware Description

provided by the USER and the deployment plan associated to the execution, the

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 15

Confidentiality: Public Distribution

Deployment Manager attempts to connect to the specific computation resource and

deploy the code and scripts, start the compilation of the application‟s components on the

target machine and starts the execution of the application.

If the deployment plan specifies that some component should be deployed in a FPGA,

then the Deployment Manager will call the FPGA Linux Infrastructure (7b). In this call,

the Deployment Manager identifies the IP Core to be deployed and the address of the

FPGA where it must be deployed. The FPGA Linux Infrastructure will use this

information and include the IP Core in the build of a Linux Operating System that will

be automatically be deployed on the target FPGA. After the installation of the bundle

Linux OS + IP Core on the target FPGA, the Deployment Manager will automatically

connect to the FPGA in order to compile and start the execution of the software part of

the component deployed on the FPGA.

When all components are deployed and compiled in the corresponding target machines,

the Building Stage is over and tarts the Runtime Stage. In this stage the Deployment

Manager starts the application (8a and 8b). When the application starts its execution, it

updates the state of the corresponding execution request to “running” (9a) and signals

the Monitoring Framework to start collection execution metrics (9b). In a similar way,

when the application finishes its execution it will also inform the Execution Manager

and the Monitoring Framework. The runtime metrics collect by the Monitoring

Framework will be provide to MBT: Test Execution (10) to allow it to evaluation it the

USER requirements are met in this execution. The results of MBT, as well as

monitoring metrics are then feed into MOM, supporting its activity of Deployment

Plans refinement, returning the application to the Design Exploration stage.

3.2 IMPLEMENTATION

The reference system consists in two Virtual Machines with all PHANTOM tools

installed as well as the dependencies need to run each tool. The tools developed to work

with FPGAs (IP Core Generator and FPGA Linux) are deployed in a virtual machine

with Xilinx tools installed, to ease the license management and to reduce the image

burden on the USER machine when the USER is not interested in PHANTOM FPGA

capabilities –FPGA VM; and all the other tools and servers are deployed in the second

machine – Main VM.

The Main VM is also the machine where are deployed a set of scripts, “User-Scripts”,

developed to help the USER on the configuration and usage of PHANTOM tools, being

the only VM and tools that the USER must interact directly with. These scripts are

available on the project‟s GitHub
2
.

Regarding to the technologies used to implement the VMs and User-Scripts, The Main

VM is based in the VM provided By ROSE Compiler, a dependency of the

Parallelization Toolset, a Ubuntu 16.04 image with all the dependencies installed to run

deployed PHANTOM tools, plus OpenSSH and OpenMPI to allow the communication

with other machines and to run local deployments of the USER application (if requested

2
 https://github.com/PHANTOM-Platform/PHANTOM-User-Scripts

https://github.com/PHANTOM-Platform/PHANTOM-User-Scripts

D5.2 – Integrated reference system

Page 16 Version 1.0 2 April 2019

Confidentiality: Public Distribution

by the USER). The FPGA VM is based on a Ubuntu 18.04 image with the dependencies

required to run the FPGA tools plus openSSH to enable the communication with other

machines.

The User-Script tools are implemented using Python and bash scripts, being very

dependent on organisation of the filesystem and correct knowledge about location of

each tool to perform its role. There are 2 files and 2 folders in the root directory of the

User-Scripts that deserve special relevance:

 settings.py – this file is where the USER should do all the configurations related

with its application. Configurations will be automatically propagated to all

PHANTOM tools.

 start-PHANTOM.py – Script to be executed by the USER to start the analysis

and execution of the USER application. This script uploads the application to the

specified repositories and start PHANTOM tools with the required

configurations to allow the automatic execution of the tool flow represented in

Figure 6.

 management-scripts – this folder contains a set of scripts to easy the

performance of some tasks over the deployed tools, like starting/stopping local

servers, clean local servers‟ databases, and perform the update of the installed

PHANTOM tools.

 Templates – this folder contains templates required for the generation of the

configuration file of each tool. The User-Scripts will use the information in

„settings.py‟ and these templates to generate the configuration file required by

each tool and deploy them on corresponding directory.

3.3 INSTALLATION AND USAGE GUIDE

The Virtual Machines are distributed in OVA format and can be imported with a

virtualization client like VirtualBox
3
 or VMWare

4
.

For Main VM the minimum specifications tested were 2 CPUS and 4GB of RAM, while

the FPGA VM was tested with 8 CPUS and 8GB of RAM. However, since the Xilinx

SDK is, by far, the tool that requires more resource, deployment with fewer resources

should also work, but at performance costs
5
.

Next will be presented the recommended steps for the correct usage of the Main VM:

1. Update of the PHANTOM tools – Is always recommended to run the script

„User-tools/management-scripts/update-tools.sh‟ to be sure that you are using

the latest version of the PHANTOM tools. Please have in mind that if the update

3
 https://www.virtualbox.org

4
 https://www.vmware.com/products/workstation-player.html

5
 https://www.xilinx.com/html_docs/xilinx2018_3/SDK_Doc/xsct/intro/xsct_system_requirements.html

https://www.virtualbox.org/
https://www.vmware.com/products/workstation-player.html
https://www.xilinx.com/html_docs/xilinx2018_3/SD

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 17

Confidentiality: Public Distribution

updates the „update-tools.sh‟ script, then the „update-tools.sh‟ script must be

executed again in order apply the changes. To execute the update script run:

Is worth to notice that this script starts the local servers upon exit.

2. Start local servers (optional) - If the USER wants to use local instance of the

servers and did not run the update script, then the servers must be started

manually by running the command:

3. Copy of USER application to VM - The next step consists in the deployment

of the USER application code to be analysed inside the Virtual Machine at a

location of the USER choice: $CODE_DIR

4. Configuration of ‘settings.py’ – The file „settings.py‟ must be configured to

according to the characteristics of the application and the intentions of the

USER. The „settings.py‟ is divide in 3 main zones:

i. Repositories configurations – used for the USER specify the

location of the repositories to be used (localhost or remote

location) and credentials. E.g.:

Set the Repository IP address and port

#repository_ip = "141.58.0.8"

#repository_port = 2777

repository_ip = "localhost"

repository_port = 8000

Authentication credentials

user =

password =

ii. Application configurations – Used for the USER to indentify

application specific properties:

Name of the application to be used server and by PHANTOM tools to

identify the application:

app_name = "WINGStest3"

Path for the root of the application‟s folder (to upload makefile and cla.in)

root_path = "/home/demo/phantom-tools/Examples/WINGStest3"

Path for the folder with the source code

src_path = "/home/demo/phantom-tools/Examples/WINGStest3/src"

demo@ubuntu:~/phantom-tools/User-tools/management-scripts$ bash update-tools.sh

demo@ubuntu:~/phantom-tools/User-tools/management-scripts$ bash start-servers.sh

D5.2 – Integrated reference system

Page 18 Version 1.0 2 April 2019

Confidentiality: Public Distribution

Path for the folder with description files (Component Network and

Platform Description)

desc_path = "/home/demo/phantom-

tools/Examples/WINGStest3/description"

Path for thevfolder with PHANTOM API files

phantom_path = "/home/demo/Desktop/phantom-

tools/PHANTOM_FILES"

Link to the where the marketplace is hosted and name of the folder where

IPCores shoul be stored locally

ipMarket_path = "https://github.com/PHANTOM-Platform/PHANTOM-

IP-Core-Marketplace.git"

ip_folder = "IPCore-MarketPlace"

Path for folder with application inputs

inputs_path = ""

Name of the component network file to be used

CompNetName = "cpn.xml"

Name of the platform description file to be used

PlatDesName = "hw_local.xml"

iii. Tools Configurations – This section contains the parameters for

configuring the PHANTOM tools. In includes the path for each

tool deployed on the machine. E.g.:

MOM location

MOM_path = "/home/demo/phantom-tools/GenericMOM"

And tool specific arguments. E.g.:

PT_mode = "on" #operation mode: on | off - "on" to run PT normally,

"off" to skip code analysis process

In this section can also be found the property for the address of

the FPGA VM, as well as the SSH port to be used

FPGAVM_ip = “”

FPGAVM_port =

5. Run the start script – The last step consists in the execution of script that will:

upload all the needed files to the specified repositories; register the application

on the Application manager; and configure and launch each tool. To start this

script run:

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 19

Confidentiality: Public Distribution

This command as several options as shown the when using the „-h‟ flag:

During the execution of the application, the terminal windows are launched with the

output of each tool. This way the USER can get a better understanding of what is

happening and get feedback about any issue that may have occur with the execution of a

tool. An example of an execution is shown in Figure 7, where the „./startPHANTOM‟

script launched new terminals for the Parallelization Toolset (PT), Multi-Objective

Mapper (MOM) and Deployment Manager (DM).

Figure 7 - Example of an execution of the start-PHANTOM.py script launching PT, MOM and DM

demo@ubuntu:~/phantom-tools/User-tools$./start-PHANTOM.py

demo@ubuntu:~/Desktop/phantom-tools/User-tools$./start-PHANTOM.py -h
usage: start-PHANTOM.py [-h] [-u] [-d] [-i] [-c] [-m] [-p]

Tool to support the execution of an application on PHANTOM Framework

optional arguments:
 -h, --help show this help message and exit
 -u, --noUpload Do not (re)upload the application to the repository.
 (Application should be already in repository)
 -d, --onlyDesc Only re-uploads the description files to the repository)
 -i, --skipInputs Do not (re)upload the application inputs to the
 repository. (Inputs should be already in repository)
 -c, --clean Clean all the data in repositories and temporary cache
 on PHANTOM tools. Automatically update PHANTOM_FILES
 (-p)
 -m, --ipmarket Uploads the IP Core Market place to the repository
 -p, --phantomfiles Uploads the PHANTOM files (PHANTOM API and Monitoring
 API)

D5.2 – Integrated reference system

Page 20 Version 1.0 2 April 2019

Confidentiality: Public Distribution

4. REQUIREMENTS ASSESSMENT

Parallelisation (General)

ID Description Priority Evaluation

U1 PHANTOM shall have a defined execution, memory and
communications model

SHALL Fully. PHANTOM pro-
gramming model provides
methods to define the exe-
cution communication and

memory

U2 PHANTOM shall support uniform and non-uniform memory
access models

SHALL Fully. PHANTOM allows to
describe UMA and NUMA
systems and the shared

memory API allows to ab-
stract those systems

U5 The PHANTOM framework shall support multi-threaded
concurrent tasks, including communication and synchroni-
sation

SHALL Fully. PHANTOM API al-
lows synchronization and
communication between

concurrent tasks

 U7 PHANTOM shall provide support for communications data-
centric applications

SHALL Fully. PHANTOM pro-
gramming model allows the
support of data-centric ap-

plications by specifying
communication driven
component network for
each user application.

U8 PHANTOM shall support component-based application
design

SHALL Fully. PHANTOM applica-
tions are designed following

a component-base ap-
proach

Heterogeneity of platform

ID Description Priority Evaluation

U16

The user shall be able to configure the target platform for a
given project, which is composed by a set of supported
target platforms

SHALL Fully. users can define and
describe target platforms
using the Hardware De-

scription file

U17 The user shall be able to constrain the target platforms
considered by the PHANTOM framework for the deploy-
ment of a given parallel code block

SHALL Fully. users can define in
the component network

type of target platform for a
specific component. More
control can be given if user
setup a deployment plan

U18 The PHANTOM framework shall hide the target platform
heterogeneity, abstracting the underlying platform technol-
ogies’ details from the user, provided the user is not trying
to exploit specific platform capabilities.

SHALL Fully. PHANTOM API can
hide/abstract platform spe-
cific configurations from the

user

U19 The PHANTOM framework shall be able to generate target
dependent parallel code for all mandatory target platforms
without user involvement when sufficient annotations are
provided.

SHALL Fully. PHANTOM is able to
generate platform-specific

code based in the code
provided by the user and

some Pragmas as annota-
tions

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 21

Confidentiality: Public Distribution

APIs and Annotations

ID Description Priority Evaluation

U20 The PHANTOM framework shall provide constructs or ab-
stractions to deal with non-uniform and uniform memory,
hiding the underlying data transfer details

SHALL Fully. PHANTOM API pro-
vides a shared memory

mechanism that abstracts
memory access details

U21 The PHANTOM framework shall automate the process of
transferring data to/from different memories according to
the component data model

SHALL Fully. PHANTOM API pro-
vides a shared memory

mechanism that abstracts
and simplifies the memory

access procedures

U23 The PHANTOM framework shall provide means to indicate
data dependencies, defining how data can be parti-
tioned/split among the parallel application components

SHALL Fully. The PHANTOM Pro-
gramming Model facilitates
the user to define data de-
pendencies in the compo-

nents maximizing the paral-
lelization capacity of a giv-

en application.

U24 The PHANTOM framework shall provide means for the
developer to describe the composition of hardware compo-
nents and interactions for the target platform

SHALL Fully. PHANTOM frame-
work allows the user to

describe hardware compo-
sition using the hardware

description files

U25 APIs, along with annotations, should be provided to applica-
tion developers allowing them to statically express which
tasks have to be isolated from the others e.g. running on
the different CPUs

SHOULD Fully. users can use the
component network de-

scription and a set of
Pragmas to specify where
components should run

U28 PHANTOM shall provide a data model for specification of
input and output data

SHALL Fully. PHANTOM frame-
work allows the user to

define data-driven compo-
nent networks of the user

application that specify
input and output data flows

per component.

Testing

ID Description Priority Evaluation

U29 PHANTOM should provide a means to test the correct func-
tioning of the software application when it is mapped onto
heterogeneous HW targets

SHOULD Fully. Application function-
ing is tested via both model

validation and functional
testing. The mapping be-

tween application and HW
targets can either be de-

fined by MBT or use MOM
decision.

U30 PHANTOM should provide mechanism to test the correct
APIs implementation

SHOULD Fully. The execution of all
test cases involves the

interaction between MBT
and PHANTOM APIs and
tests the API implementa-

tion.

U31 PHANTOM should provide an API for implementation of
tests (similar to JUnit for Java)

SHOULD Fully. MBT model in xLia
and component network

schema are APIs to

D5.2 – Integrated reference system

Page 22 Version 1.0 2 April 2019

Confidentiality: Public Distribution

achieve early validation;
TTCN-3 or MBT models in
xLia, used to generate test
cases, are APIs to realise

test execution.

Multi-dimensional optimisation (timing, power, thermal)

ID Description Priority Evaluation

U49 The mapping proposed by the PHANTOM framework shall
reason about the functional and non-functional require-
ments of the application

SHALL Fully. MOM has into con-
sideration the both func-
tional and non-functional

requirements

U50 The PHANTOM framework should provide facilities (e.g.
APIs or annotations) to consider non-functional require-
ments for execution time

SHOULD Fully. User can specify
non-functional require-

ments using the component
network

U51 The PHANTOM framework should provide facilities (e.g.
APIs or annotations) to consider non-functional require-
ments for memory

SHOULD Fully. User can specify
non-functional require-

ments using the component
network

U52 The PHANTOM framework should provide facilities (e.g.
APIs or annotations) to consider non-functional require-
ments for power consumption

SHOULD Fully. User can specify
non-functional require-

ments using the component
network

U53 The PHANTOM framework should provide facilities (e.g.
APIs or annotations) to consider non-functional require-
ments for cost

SHOULD Fully. Given the cost defini-
tion as a combined as-

sessment of execution time
and power consumption,

MOM generates mappings
that may satisfy different
cost-effective scenarios.

U54 The PHANTOM framework should provide facilities (e.g.
APIs or annotations) to consider non-functional require-
ments for communications bandwidth

SHOULD Fully. User can specify
non-functional require-

ments using the component
network

U55 The PHANTOM framework should provide facilities (e.g.
APIs or annotations) to consider non-functional require-
ments for I/O

SHOULD Fully. The non-functional
requirement for I/O usage

is consider as a partial
analysis within MOM to

generate an overall execu-
tion time analysis.

U56 The PHANTOM framework should provide facilities (e.g.
APIs or annotations) to consider non-functional require-
ments for security

SHOULD Fully. Requirements re-
garding security aspects
are both explicitly consid-

ered in MOM covering exe-
cution integrity in GPUs

and implicitly covering data
security with the use of the
Component Network Exe-

cution Integrity and the
Repository component

which integrates data au-
thentication and security

related features.

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 23

Confidentiality: Public Distribution

U57 The PHANTOM framework shall consider data obtained
from the run-time monitoring of non-functional properties in
the mapping step, reconfiguring and optimizing the mapping
according with the obtained execution data

SHALL Fully. MOM and use moni-
toring data collected on

previous execution to re-
configure and optimize

mappings

U58 The PHANTOM framework should consider data obtained
from the run-time monitoring of non-functional properties in
the parallelization step, thereby modifying the optimizations
to which the code to parallelize will be subjected

SHOULD Fully. MOM interacts with
the PHANTOM monitoring
framework to retrieve per-
formance metrics per on
non-functional properties
(e.g. execution time) per
application component to
propose the most efficient
parallelization granularity.

U60 The PHANTOM framework shall accept qualitative non-
functional requirements expressed in the form of an intent
to optimize towards a given non-functional property

SHALL Fully. Qualitative non-
functional requirements can
be interpreted in to quanti-
tative ones, in the form of

bounded values.

U61 The PHANTOM framework shall accept quantitative re-
quirements expressed in the form of bounds, which the
non-functional properties should not surpass in run-time

SHALL Fully. MOM already ac-
cepts quantitative require-
ments of execution time

and power consumption in
the form of upper bounds.

U62 It should be possible to export the state of the multi-
objective mapper and its underlying input data in order to
continue development in another workstation / PHANTOM
framework instance (e.g. decisions)

SHOULD Fully. All PHANTOM tools,
including MOM, are inte-

grated in a virtual machine
toolbox to facilitate overall

usage and reusability.
MOM as standalone tool
can also be used by any

third workstation, if config-
ured to use servers where
the data of the application

is stored.

U63 PHANTOM should support means for expressing task affini-
ties that allow the developer to group processes/threads to
run together on specific processors or separately to meet
constraints

SHOULD Fully. The developer is
given the option to indicate

the grouping of pro-
cesses/threads to run to-
gether on specific proces-
sors with the use of a pre-
defined mapping that will

be enforced for deployment
bypassing MOM’s analysis.

System and data security

ID Description Priority Evaluation

U64 Remote target platforms should be able to be secured
against eavesdropping through interfaces with external
infrastructures for trust/authentication

SHOULD Fully. Access to remote
platforms require prior au-
thentication. TLS can be

used to protect data trans-
missions.

U65 Data obtained through the run-time monitoring should be
able to be secured against eavesdropping / unwanted ac-
cess

SHOULD Fully. Access to monitoring
data on servers required

authentication and commu-

D5.2 – Integrated reference system

Page 24 Version 1.0 2 April 2019

Confidentiality: Public Distribution

nication can be secured
using HTTPS communica-

tion

U66 PHANTOM should support means for tasks isolation and
information flow control policy

SHOULD Fully. PHANTOM supports
tasks isolation and deploy-
ment in more secure target

platforms.

U67 PHANTOM should be able to support HPC/Cloud security
mechanisms to protect data and control data access

SHOULD Fully. PHANTOM security
mechanism is compatible
with HPC/Cloud security

mechanisms

U68 PHANTOM shall be able to guarantee data integrity when
applications are mapped onto heterogeneous targets

SHALL Fully. Data integrity is as-
sured by NGAC controls on

repository, OS provided
isolation of GPU/CPU pro-
cesses and FPGA tasks

isolation

Performance

ID Description Priority Evaluation

U69 The PHANTOM development framework shall be able to
execute on a typical "mid-end" workstation (Core I5, 4GB
RAM)

SHALL Fully. Phantom Reference
platform integrates

PHANTOM components in
a Virtual Machine able to

run on a typical workstation

U70 PHANTOM hardware abstraction layer should introduce
less than 2 times performance overhead for memory, IO,
and other operations

SHOULD Fully. Tools used during
runtime do not introduce

overheads that exceed the
target.

Dependability

ID Description Priority Evaluation

U71 PHANTOM may support survivability mechanisms to detect
and recover from faults

MAY Partially. User can detect
that a fault occurred on one
(or more) PHANTOM tools
but PHANTOM cannot re-

cover by itself

Run-time monitoring

ID Description Priority Evaluation

U72 The PHANTOM run-time monitor shall be able to monitor
non-functional properties of an application

SHALL Fully. Monitoring Frame-
work supports user-specific

metrics

U73 The run-time monitor shall be capable of acquiring monitor-
ing data in all mandatory target platforms (e.g. CPU, FPGA,
etc) subject to available hardware capabilities

SHALL Fully. Monitoring Frame-
work support CPU and a
defined set of GPUs and

FPGAs

U74 The PHANTOM framework should be capable of monitoring
execution time properties

SHOULD Fully. High accuracy on
time measurements at the
MF-API in order of few ns

U75 The PHANTOM framework should be capable of monitoring
memory properties

SHOULD Fully. Measured the
memory on system level as

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 25

Confidentiality: Public Distribution

total, amount free, used for
buffers, used for cache I/O,

and amount used.
Measured used memory on
application level, and at the
component levels if imple-
mented as threads or bina-

ry executables.

U76 The PHANTOM framework should be capable of monitoring
power consumption properties

SHOULD Fully: a) using the ACME
board we measure the con-

sumption on embedded
devices.

b) on NVdia GPUs when
available sensors

C) On HPC is calculated
based on the CPU load,

mem operations, I/O, and
network traffic

U77 The PHANTOM framework should be capable of monitoring
communications bandwidth properties

SHOULD Fully: a) Measured the
bandwidth used of each

network device on system
level.

b) Measured amount of
data sent and received per
second on PHANTOM ap-

plication level, and app
component level.

U78 The PHANTOM framework should be capable of monitoring
I/O properties

SHOULD Fully: measure amount of
data read and write per on
I/O on PHANTOM applica-
tion level, and app compo-

nent level.

U79 The data obtained by the run-time monitor shall be accessi-
ble and exposed to the user for their own tasks

SHALL Fully. Data collected can
be accesses on the Moni-

toring server and visualised

U80 The user shall be able to have fine-grained control over
execution time monitoring by indicating application sub-
components (i.e. tasks, loop, code blocks) whose execution
time shall be monitored

SHALL Fully. Using User defined
metrics can monitor the

execution time of any size
of code tasks, looks, code
blocks), accuracy in order

of few ns.

U81 It should be possible to export the run-time monitoring data
in a structured data format

SHOULD Fully. Data can be export-
ed in JSON format

U82 For non periodic non-functional properties, the user should
be able to select the frequency of data acquisition

SHOULD Fully. The configuration
parameters allow defining
the frequency of data ac-
quisition independently for
each plugin and each ap-

plication.

U83 PHANTOM should provide monitoring of application-
specific performance metrics

SHOULD Fully. Monitoring Frame-
work supports user-specific

metrics

U84 PHANTOM shall provide a facility for storing and retrieving
historical profiles of the stored events and metric values

SHALL Fully. Data collected can
be accesses on the Moni-

toring server and visualised

D5.2 – Integrated reference system

Page 26 Version 1.0 2 April 2019

Confidentiality: Public Distribution

U85 PHANTOM shall provide the possibility to perform some
basic analytics for the stored performance data

SHALL Fully. PHANTOM Monitor-
ing server calculates aver-
age maximum and mini-
mum of data stored. The
RESTful API allows users
to submit ElasticSearch

scripts.

Communications

ID Description Priority Evaluation

U86 PHANTOM may support application specific communication
bus/protocols

MAY Partially. Components
have been implemented in
a network protocol inde-

pendent way. While
PHANTOM does not pro-
vide specific mechanisms
to support communication
bus/protocols like serial

communication, it also does
not block implementations

on applications

 D5.2 – Integrated reference system

2 April 2019 Version 1.0 Page 27

Confidentiality: Public Distribution

5. CONCLUSIONS

In this document was presented the Reference Integrated System that integrates the

PHANTOM tools in two virtual machines. Those machines are especially useful for the

to allow new users to test and get used to PHANTOM technologies and its

functionalities before advancing to customized, potential more efficient, tool setups.

This virtual environment is complemented with by the description of the detailed tool

flow between the tools implemented in the Reference Integrated System. Also, and to

further ease the effort required to new PHANTOM Users, it is provided a set of User-

Scripts that allow to manage some elements of the virtual environment, like the local

deployed server, and to simplify the upload and analysis and execution of the User

application.

As one of the main elements that support the integration between PHANTOM tools, it is

also presented the Repository, with its REST API, the context description supported by

a dynamic metadata description and its Subscription/Notification mechanism, that

explores the advantages of the metadata description mechanism to support the

expression to queries to different types of contents or events. The Repository also acts

as a security element by facilitating the authentication mechanism and by continually

assessing the rights of the User using the security framework.

Finally, the requirements related with the overall of the PHANTOM framework, its

capabilities and design, are assessed by the R&D partners. From a total of 55

requirements marked as „Shall‟, „Should‟ and „May‟ (representing priority from the

greater to the lesser), only two requirements were evaluated as „Partially‟ met, and

whose priority as classified as „May‟. All the other requirements were evaluated as

„Fully‟ met.

